Start Submission Become a Reviewer

Reading: Open-ocean convection and polynya formation in a large-scale ice–ocean model

Download

A- A+
Alt. Display

Original Research Papers

Open-ocean convection and polynya formation in a large-scale ice–ocean model

Authors:

Hugues Goosse ,

Institut d’Astronomie et de Géophysique Georges Lemaître, Université Catholique de Louvain, Louvain-la-Neuve, BE
X close

Thierry Fichefet

Institut d’Astronomie et de Géophysique Georges Lemaître, Université Catholique de Louvain, Louvain-la-Neuve, BE
X close

Abstract

The physical processes responsible for the formation in a large-scale ice–ocean model of an offshore polynya near the Greenwich meridian in the Southern Ocean are analysed. In this area, the brine release during ice formation in autumn is sufficient to destabilise the water column and trigger convection. This incorporates relatively warm water into the surface layer which, in a first step, slows down ice formation. In a second step, it gives rise to ice melting until the total disappearance of the ice at the end of September. Two elements are crucial for the polynya opening. The first one is a strong ice-transport divergence in fall induced by southeasterly winds, which enhances the amount of local ice formation and thus of brine release. The second is an inflow of relatively warm water at depth originating from the Antarctic Circumpolar Current, that sustains the intense vertical heat flux in the ocean during convection. The simulated polynya occurs in a region where such features have been frequently observed. Nevertheless, the model polynya is too wide and persistent. In addition, it develops each year, contrary to observations. The use of a climatological forcing with no inter annual variability is the major cause of these deficiencies, the simulated too low density in the deep Southern Ocean and the coarse resolution of the model playing also a role. A passive tracer released in the polynya area indicates that the water mass produced there contributes significantly to the renewal of deep water in the Weddell Gyre and that it is a major component of the Antarctic Bottom Water (AABW) inflow into the model Atlantic.

How to Cite: Goosse, H. and Fichefet, T., 2001. Open-ocean convection and polynya formation in a large-scale ice–ocean model. Tellus A: Dynamic Meteorology and Oceanography, 53(1), pp.94–111. DOI: http://doi.org/10.3402/tellusa.v53i1.12175
  Published on 01 Jan 2001
 Accepted on 13 Jun 2000            Submitted on 22 Feb 1999

References

  1. Andreas , E. L. and Makshtas , A. P . 1985 . Energy exchange over Antarctic sea ice in the spring . J. Geophys. Res . 90 , 7199 – 7212 .  

  2. Alverson , K. and Owens , W. B . 1996 . Topographic preconditioning of open-ocean deep convection . J. Phys. Oceanogr . 26 , 2196 – 2213 .  

  3. Baumgartner , A. and Reichel , E . 1975 . The world water balance . Elsevier , Amsterdam , 179 pp .  

  4. Berliand , M. E. and Strokina , T. G . 1980 . Global distribution of the total amount of clouds (in Russian). Hydrometeorological Pub. House, Leningrad , 71 pp. Bersch , M. 1988 . On deep convection in the Weddell Gyre . Deep-Sea Res . 35 , 1269 – 1296 .  

  5. Bersch , M. , Becker , G. A. , Frey , H. and Koltermann , K. P . 1992 . Topographic effects of the Maud Rise on the stratification and circulation of the Weddell Gyre . Deep-Sea Res . 39 , 303 – 331 .  

  6. Bromwich , D. H. , Chen , B. and Hines , K. M . 1998 . Global atmospheric impacts induced by year-round open water adjacent to Antarctica. J. Geophys. Res . 103 , 11 , 173 – 11 , 189.  

  7. Bryan , K. and Lewis , L. J . 1979 . A water mass model of the World Ocean . J. Geophys. Res . 84 , 2503 – 2517 .  

  8. Budd , W. F . 1991 . Antarctica and global change . Clim. Change 18 , 272 – 299 .  

  9. Campin , J. M. and Goosse , H . 1999 . Parameterization of density-driven downsloping flow for a coarse-resolution ocean model in z-coordinate . Tellus 51A , 412 – 430 .  

  10. Carsey , F. D . 1980 . Microwave observation of the Weddell polynya. Mon. Wea. Rev. 108 , 2032 - 2044. Comiso , J. C. and Gordon , A. L. 1987. Recurring polynyas over the Cosmonaut Sea and the Maud Rise . J. Geophys. Res . 92 , 2819 – 2833 .  

  11. Comiso , J. C. and Gordon , A. L . 1996 . Cosmonaut polynya in the Southern Ocean: Structure and variability. J. Geophys. Res . 101 , 18 , 297 – 18 , 313.  

  12. Cox , M . 1989 . An idealized model of the World Ocean. Part I: The global-scale water masses . J. Phys. Oceanogr . 19 , 1730 – 1752 .  

  13. Crutcher , H. L. and Meserve , J. M . 1970 . Selected level heights, temperatures and dew points for the Northern Hemisphere. NAVAIR Rep. 50-1C-52, revised, Nay. Weather Serv. Command, Washington, D.C. , 98 pp.  

  14. De Veaux , R. D. , Gordon , A. L. , Comiso , J. C. and Bacherer , N. E. 1993 . Modeling of topographic effects on Antarctic sea ice using multivariate adaptative regression splines. J. Geophys. Res . 98 , 20 , 307 - 20 , 319.  

  15. Foster , T. D. and Carmack , E. C. 1976 . Frontal zone mixing and Antarctic Bottom Water formation in the southern Weddell Sea. Deep-Sea Res. 23 , 301 - 317.  

  16. Gill , A. E. and Bryan , K. 1971 . Effect of geometry on the circulation of a three-dimensional Southern Hemisphere ocean model. Deep-Sea Res . 18 , 685 - 721.  

  17. Gloersen , P. , Campbell , W. J. , Cavalieri , D. J. , Comiso , J. C. , Parkinson , C. L. and Zwally , H. J. 1992 . Arctic and Antarctic sea ice , 1978-1987 : Satellite passive-microwave observations and analysis. NASA SP-511, Washington, D.C , 290 pp.  

  18. Goosse , H . 1997 . Modelling the large-scale behaviour of the couped ocean-sea-ice system. Ph.D. thesis, Univ. Cat. Louvain, Louvain-la-Neuve, Belgium , 231 pp.  

  19. Goosse , H. , Campin , J. M. , Fichefet , T. and Deleersnijder , E. 1997 . The impact of sea-ice formation on the properties of Antarctic Bottom Water . Ann. Glaciol . 25 , 276 – 281 .  

  20. Goosse , H. , Deleersnijder , E. , Fichefet , T. and England , M. H . 1999 . Sensitivity of a global coupled ocean-sea ice model to the parameterization of vertical mixing. J. Geophys. Res . 104 , 13 , 681 – 13 , 695.  

  21. Gordon , A.L . 1978 . Deep Antarctic convection west of Maud Rise . J. Phys. Oceanogr . 8 , 600 – 612 .  

  22. Gordon , A. L . 1981 . Seasonality of Southern Ocean sea ice . J. Geophys. Res . 86 , 4193 – 4197 .  

  23. Gordon , A. L . 1982 . Weddell Deep Water variability. J. Mar. Res . 40 (suppl.), 199 - 217 .  

  24. Gordon , A. L . 1991 . Two stable modes of Southern Ocean winter stratification. In: Deep convection and deep water formation in the oceans (ed. P. C. Chu and J. C. Gascard ). Elsevier Oceanography Series 57, Elsevier, Amsterdam , 17 - 35 .  

  25. Gordon , A. L. and Huber , B. A . 1990 . Southern Ocean winter mixed layer. J. Geophys. Res . 95 , 11 , 655 – 11 , 672.  

  26. Grabs , W. , De Couet , T. and Pauler , J . 1996 . Freshwater fluxes from continents into the world oceans based on data of the global runoff data base. Global Runoff Data Centre Rep. 10, Fed. Inst. of Hydrol., Koblenz, Germany , 228 pp.  

  27. Häkkinen , S . 1995 . Seasonal simulation of the Southern Ocean coupled ice-ocean system. J. Geophys. Res . 100 , 22 , 733 – 22 , 748.  

  28. Hellerman , S. and Rosenstein , M . 1983 . Normal monthly wind stress over the World Ocean with error estimates . J. Phys. Oceanogr . 13 , 1093 – 1104 .  

  29. Jaeger , L . 1976 . Monatskarten des niederschlags ffir die ganze erde (in German). Ber Dtsch Wetterdienstes 18 , No. 139.  

  30. Killworth , P. D . 1983 . Deep convection in the World Ocean . Rev. Geophys. Space Phys . 21 , 1 – 26 .  

  31. Legutke , S. , Maier-Reimer , E. , Stössel , A. and Hellbach , A . 1997 . Ocean-sea-ice coupling in a global ocean general circulation model . Ann. Glaciol . 25 , 116 – 120 .  

  32. Levitus , S ., 1982 . Climatological atlas of the World Ocean. NOAA Prof. Pap. 13, U.S. Gov. Print. Office, Washington, D.C., 173 pp.  

  33. Martinson , D. G . 1990 . Evolution of the Southern Ocean winter mixed layer and sea ice: Open ocean deepwater formation and ventilation. J. Geophys. Res . 95 , 11 , 641 – 11 , 654.  

  34. Martinson , D. G. , Killworth , P. D. and Gordon , A. L . 1981 . A convective model for the Weddell polynya . J. Phys. Oceanogr . 11 , 466 – 488 .  

  35. Mellor , G. L. and Yamada , T . 1982 . Development of a turbulence closure model for geophysical fluid problems . Rev. Geophys. Space Phys . 20 , 851 – 875 .  

  36. Motoi , T. , Ono , N. and Wakatsuchi , M . 1987 . A mechan-ism for the formation of the Weddell polynya in 1974 . J. Phys. Oceanogr . 17 , 2241 – 2247 .  

  37. Morawitz , W. M. L. , Sutton , P. J. , Worcester , P. F. and Cornuelle , B. D . 1996 . Three-dimensional observations of a deep convective chimney in the Greenland Sea during winter 1988/1989 . J. Phys. Oceanogr . 26 , 2316 – 2343 .  

  38. Muench , R. D . 1991 . Relict convective features in the Weddell Sea. In: Deep convection and deep water formation in the oceans (ed. P. C. Chu and J. C. Gascard ). Elsevier Oceanography Series 57, Elsevier, Amster-dam , 53 - 67 .  

  39. Orsi , AH. ., Nowlin , W. D. and Whitworth , T. 1993 . On the circulation and stratification of Weddell Gyre. Deep-Sea Res . 40 , 169 – 203.  

  40. Smith , S. D. , Muench , R. D. and Pease , C. H. 1990. Polynyas and leads: An overview of physical processes and environment. J. Geophys. Res. 95 , 9461 - 9479.  

  41. Stössel , A. , Kim , S. J. and Drijfout , S. S. 1998. The impact of Southern Ocean sea ice in a global ocean model . J. Phys. Oceanogr . 28 , 1999– 2018 .  

  42. Taljaard , J. J ., van Loon , H. , Crutcher , H. L. and Jenne , R. L. 1969 . Climate of the upper air, Part I. Southern Hemisphere , Vol. 1 , Temperatures, dew points, and heights at selected pressure levels. NAVAIR Rep. 50-1C-55, U.S. Naval Weather Serv. Command, Washington D.C., 135 pp.  

  43. Trenberth , K. E. , Olson , J. G and Large , W. G . 1989 . A global ocean wind stress climatology based on ECMWF analyses. NCAR/TN-338 + STR, National Center for Atmos. Res., Boulder, Colorado , 93 pp.  

  44. van Ypersele , J.-P . 1989 . Coupled ocean and sea-ice models: review and perspectives. In: Climate and geo-sciences (ed. A. Berger , S. Schneider and J. Cl. Duplessy ). Kluwer Academic Publishers , Dordrecht , 253 - 277 .  

  45. Wadhams , P. , Lange , M. A. and Ackley , S. F . 1987 . The ice thickness distribution across the Atlantic sector of the Antarctic Ocean in midwinter. J. Geophys. Res . 92 , 14 , 535 – 14 , 552.  

  46. Walin , G . 1993 . On the formation of ice on deep weakly stratified water . Tellus 45A , 143 – 157 .  

  47. Whitworth , T. III , Nowlin , W. D. , Pillsbury , R. D. , Moore , M. I. and Weiss , R. F. 1991 . Observations of the Antarctic Circumpolar Current and deep bound-ary current in the southwest Atlantic. J. Geophys. Res . 96 , 15 , 105 – 15 , 118.  

  48. Xie , P. and Arkin , P. A . 1996 . Analyses of global monthly precipitation using gauge observations, satellite esti-mates and numerical model predictions . J. Clim . 9 , 840 – 858 .  

  49. Zwally , H. J. , Comiso , J. C. and Gordon , A. L . 1985 . Antarctic offshore leads and polynyas and oceano-graphic effects . In: Oceanology of the Antarctic conti-nental shelf (ed. S. S. Jacobs ). Antarctic Research Series 43 , Amer. Geophys. Union , 203 – 226 .  

comments powered by Disqus