Start Submission Become a Reviewer

Reading: A troposphere–stratosphere–mesosphere general circulation model with parameterization of gra...

Download

A- A+
Alt. Display

Original Research Papers

A troposphere–stratosphere–mesosphere general circulation model with parameterization of gravity waves: climatology and sensitivity studies

Authors:

Evgeny M. Volodin ,

Institute of Numerical Mathematics of the Russian Academy of Science, Gubkina 8, Moscow 117951 GSP-1, RU
X close

Gerhard Schmitz

Institute for Atmospheric Physics, Schlossstrasse 6, Kuehlungsborn 18225, DE
X close

Abstract

The climatology of the troposphere–stratosphere–mesosphere model of the Institute for Numerical Mathematics (INM) with the uppermost level at 0.003 hPa is presented. This model is vertically extended from the upper level of 10 hPa for the earlier version, and a drag parameterization due to internal gravity waves (GW) is included. The model describes the main features of the mesospheric circulation: decreasing and reversion of westerly and easterly winds, equator ward shift of the westerly wind maximum with height and reversal of the meridional temperature gradient in the upper mesosphere. The model underestimates to some extent the amplitude of wave number 1 for stationary waves in the winter hemisphere. The same holds for the internal low-frequency variability in the winter stratosphere. The sensitivity of the model climate is studied with respect to the inclusion of orographic gravity wave drag and the variation of the source height of internal gravity waves.

How to Cite: Volodin, E.M. and Schmitz, G., 2001. A troposphere–stratosphere–mesosphere general circulation model with parameterization of gravity waves: climatology and sensitivity studies. Tellus A: Dynamic Meteorology and Oceanography, 53(3), pp.300–316. DOI: http://doi.org/10.3402/tellusa.v53i3.12191
  Published on 01 Jan 2001
 Accepted on 27 Nov 2000            Submitted on 5 Jul 1999

References

  1. Alekseev , V. A. , Volodin , E. M. , Galin, V. Ya. , Dymnikov , V. P. and Lykossov , V. N . 1998 . Modeling of the present-day climate by the atmospheric model of INM RAS “DNM GCM”. Description of the model version A5421 and results of AMIP II simulations. INM report N2086-B98. Available by request from the address: Volodin, E. M., Institute of Numerical Mathematics, Gubkina 8, Moscow 117951 GSP-1, Russia.  

  2. Arakawa , A. and Lamb , V. R . 1981 . A potential enstrophy and energy conserving scheme for shallow water equations . Mon. Wea. Rev . 109 , 18 – 36 .  

  3. Betts , A. K . 1986 . A new convective adjustment scheme. Part I. Observational and theoretical basis . Quart. J. Roy. Met. Soc . 112 , 677 – 691 .  

  4. Boville , B. A . 1995 . Middle atmosphere version of CCM2 (MACCM2): Annual cycle and interannual variability . J. Geophys. Res . 100 , 9017 – 9039 .  

  5. Boville , B. A. and Randel , W. J . 1986 . Observations and simulations of the variability of the stratosphere and troposphere in January . J. Atmos. Sci . 43 , 3015 – 3034 .  

  6. Briegleb , B. P . 1992 . Delta-Eddington approximation for solar radiation in the NCAR community climate model . J. Geophys. Res . 97 , 7603 – 7612 .  

  7. Butchart , N. and Austin , J . 1998 . Middle atmosphere climatologies from troposphere—stratosphere—mesosphere configuration of the UKMO’s unified model . J. Atmos. Sci . 55 , 2782 – 2809 .  

  8. Chou , M. D. and Kouvaris , L . 1991 . Calculation of transmission functions in the infrared CO, and 03 bands . J. Geophys. Res . 96 , 9003 – 9012 .  

  9. Christiansen , B. , Guldberg , A. , Hansen , A. W. and Riishojgaard , L. P . 1997 . On the response of a three-dimensional general circulation model to imposed changes in the ozone distribution. J. Geophys. Res . 102 , 13 , 051 – 13 , 077.  

  10. Galin, V. Ya . 1998 . Parameterization of radiative pro-cesses in the DNM atmospheric model. lzvestia AN. Fizika Atmosfery i Oceana 34 , 380 – 389 .  

  11. Fleming , E. L. , Chandra , S. , Barnett , J. J. and Corney , M . 1990 . Zonal mean temperature, pressure, zonal wind and geopotential height as functions of latitude . Adv. Space Res . 10 , 1211 – 1259 .  

  12. Hamilton , K . 1995 . Interannual variability in the North-ern Hemisphere winter middle atmosphere in control and perturbed experiments with the GFDL SKYHI general circulation model . J. Atmos. Sci . 52 , 44 – 66 .  

  13. Hamilton , K . 1996 . Comprehensive meteorological modeling of the middle atmosphere: a tutorial review . J. Atm. Tem Phys . 58 , 1591 – 1627 .  

  14. Hamilton , K . 1997 . Gravity wave processes. Their para-meterization in global climate models. NATO ASI Series. Series I . Global Environmental Change 50 , 480 pp .  

  15. Hamilton , K. , Wilson , R. J. , Mahlman , J. D. and Umscheid , L. J . 1995 . Climatology of the SKYHI troposphere-stratosphere-mesosphere general circula-tion model . J. Atmos. Sci . 52 , 5 – 43 .  

  16. Hines , C. O. 1997a . Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1. Basic formulation. J. Atm. Sol. Terr. Phys . 59 , 371 – 386.  

  17. Hines , C. O. 1997b . Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1. Broad and quasimonochromatic spectra, and implementation. J. Atm. Sol. Tem Phys . 59 , 387 – 400.  

  18. Kalnay , E. et al. 1996 . The NCEP/NCAR 40-year reana-lysis project . Bulletin of the American Meteorological Society 77 , 437 – 471 .  

  19. Koernich , H . 1998 . Die Klimaveraenderlichkeit in einem einfachen globalen Zirkulationmodell unter Berueck-sichtigung der Orographie . Diplomarbeit. University of Rostock , Germany .  

  20. Langematz , U. and Pawson , S . 1997 . The Berlin tropo-sphere-stratosphere-mesosphere GCM. Climatology and forcing mechanisms . Quart. J. Royal Met. Soc . 123 , 1075 – 1096 .  

  21. Lindzen , R. S . 1981 . Turbulence and stress owing to gravity wave and tidal breakdown . J. Geophys. Res . 86 , 9707 – 9714 .  

  22. Manzini , E. and Bengtsson L . 1996 . Stratospheric climate and variability from a general circulation model and observations . Climate Dyn . 12 , 615 – 639 .  

  23. Manzini , E. , McFarlane , N. A. and McLandress , C . 1997a . Impact of the Doppler-spread parameterization on the simulation of the middle atmosphere circulation using the MAECHAM4 general circulation model . J. Geophys. Res . 102 , 751 – 762 .  

  24. Manzini , E. , McFarlane , N. A. and McLandress , C . 1997b . Middle atmosphere simulations with the ECHAM4 model: Sensitivity to the Doppler spread gravity wave parameterization. In: Gravity wave pro-cesses. Their parameterization in global climate models. Edited by Hamilton, K. NATO ASI Series. Series I . Global Environmental Change 50 , 367 – 381 .  

  25. Manzini , E. and McFarlane , N. A . 1998 . The effect of varying the source spectrum of a gravity wave para-meterization in a middle atmosphere circulation model. J. Geophys. Res . 103 , 31 , 523 – 31 , 539.  

  26. McFarlane , N. , McLandress , C. and Beagley , S . 1997 . Seasonal simulation with the Canadian Middle Atmo-sphere Model: Sensitivity to a combination of orographic and Doppler spread parameterizations of gravity wave drag. In: Gravity wave processes. Their parameterization in global climate models. Edited by Hamilton, K. NATO ASI Series. Series I . Global Environmental Change 50 , 351 – 366 .  

  27. Norton , W. A. and Thuburn , J . 1997 . The mesosphere in the extended UGAMP GCM. In: Gravity wave pro-cesses. Their parameterization in global climate models. Edited by Hamilton, K. NATO ASI Series. Series I . Global Environmental Change 50 , 383 – 401 .  

  28. Palmer , T. N. , Shutts , G. J. and Swinbank , R . 1986 . Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameteriz-ation . Quart. J. Roy. Met. Soc . 112 , 1001 – 1031 .  

  29. Pawson , S. and Fiorino , M . 1998 . A comparison of reana-lyses in the tropical stratosphere. Part 1: thermal struc-ture and the annual cycle . Climate Dyn . 14 , 631 – 644 .  

  30. Pawson , S. , Meyer , A. and Leder , S . 1995 . Internal variability in a perpetual January integration of a troposphere-stratosphere-mesosphere GCM . Quart. J. Roy. Met. Soc . 121 , 369 – 397 .  

  31. Pawson , S. , Langematz , U. , Radek , G , Schlese , U. and Strauch , P . 1998 . The Berlin troposphere-strato-sphere-mesosphere GCM. Sensitivity to physical parameterizations . Quart. J. Roy. Met. Soc . 124 , 1343 – 1371 .  

  32. Randel , W. J . 1992 . Global atmospheric circulation statistics 1000-1 mb. NCAR Technical Note , NCAR/TN-295 + STR. National Center for Atmospheric Research , Boulder , Colorado .  

  33. Rind , D. , Suozzo , R. , Balachandran , N. K. , Lacis , A. and Russel , G. 1988a. The GISS Global Climate Middle Atmosphere model. Part 1. Model structure and climatology. J. Atmos. Sci . 45 , 329 – 370.  

  34. Rind , D. , Suozzo , R. and Balachandran , N. K. 1988b. The GISS Global Climate Middle Atmosphere model. Part 2. Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag. J. Atmos. Sci . 45 , 371 – 386.  

  35. Swinbank , R. , Lahoz , W. A. , O’Neill , A. , Douglas , C. S. , Heaps , A. and Podd , D . 1998 . Middle atmosphere variability in the UK Meteorological Office Unified Model . Quart. J. Roy. Met. Soc . 124 , 1485 – 1527 .  

  36. Volodin , E. M. and Lykossov , V. N . 1998 . Parameter-ization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circu-lation models: 1. Formulation and simulations based on local observational data. lzvestia Akadetnii Nauk. Fizika Atmosfery i Okeana 34 , 453 – 465 .  

  37. Wang , W. C. , Liang , X. Z. , Dudek , M. P. , Pollard , D. and Thompson , S. L . 1995 . Atmospheric ozone as a climate gaz . Atmos. Res . 37 , 247 – 256 .  

  38. Yulaeva , E. , Holton , J. R. and Wallace , J. M . 1994 . On the cause of the annual cycle in tropical lower-stratospheric temperatures . J. Atmos. Sci . 51 , 169 – 174 .  

comments powered by Disqus