Start Submission Become a Reviewer

Reading: A time-split, forward-backward numerical model for solving a nonhydrostatic and compressible...

Download

A- A+
Alt. Display

Original Research Papers

A time-split, forward-backward numerical model for solving a nonhydrostatic and compressible system of equations

Authors:

Wu-Ron Hsu ,

Department of Atmospheric Sciences, National Taiwan University, 1, Roosevelt Road Sec. 4, Taipei, TW
X close

Wen-Yih Sun

Department of Earth and Atmospheric Science, Purdue University, 1397 Civil Engineering Building, West Lafayette, IN 47907, US
X close

Abstract

In this paper, we present a numerical procedure for solving a 2-dimensional, compressible, and nonhydrostatic system of equations. A forward-backward integration scheme is applied to treat high-frequency and internal gravity waves explicitly. The numerical procedure is shown to be neutral in time as long as a Courant–Friedrichs–Lewy criterion is met. Compared to the leapfrog-scheme most models use, this method involves only two time steps, which requires less memory and is also free from unstable computational modes. Hence, a time-filter is not needed. Advection and diffusion terms are calculated with a time step longer than sound-wave related terms, so that extensive computer time can be saved. In addition, a new numerical procedure for the free-slip bottom boundary condition is developed to avoid using inaccurate one-sided finite difference of pressure in the surface horizontal momentum equation when the terrain effect is considered. We have demonstrated the accuracy and stability of this new model in both linear and nonlinear situations. In linear mountain wave simulations, the model results match the corresponding analytical solution very closely for all three cases presented in this paper. The analytical streamlines for uniform flow over a narrow mountain range were obtained through numerical integration of Queney’s mathematical solution. It was found that Queney’s original diagram is not very accurate. The diagram had to be redrawn before it was used to verify our model results. For nonlinear tests, we simulated the famous 1972 Boulder windstorm and a bubble convection in an isentropic enviroment. Although there are no analytical solutions for the two nonlinear tests, the model results are shown to be very robust in terms of spatial resolution, lateral boundary conditions, and the use of the time-split scheme.

How to Cite: Hsu, W.-R. and Sun, W.-Y., 2001. A time-split, forward-backward numerical model for solving a nonhydrostatic and compressible system of equations. Tellus A: Dynamic Meteorology and Oceanography, 53(3), pp.279–299. DOI: http://doi.org/10.3402/tellusa.v53i3.12195
  Published on 01 Jan 2001
 Accepted on 6 Oct 2000            Submitted on 4 Feb 2000

References

  1. Bacmeister , J. T. and Pierrehumbert , R. T . 1988 . On high-drag states of nonlinear stratified flow over an obstacle . J. Atmos. Sci . 45 , 63 – 80 .  

  2. Carpenter , K. M . 1979 . An experimental forecast using a non-hydrostatic mesoscale model . Quart. J. Roy. Meteor. Soc . 105 , 629 – 655 .  

  3. Chen , S. H . 1999 . The development of a nonhydrostatic model and a numerical study of flash flooding in the Ohio Valley . PhD thesis. Department of Earth and Atmospheric Sciences , Purdue University , 181 pp .  

  4. Chern , J. D . 1994 . Numerical simulations of cyclogenesis over the western United States . PhD thesis. Department of Earth and Atmospheric Sciences , Purdue Univer-sity , 178 pp .  

  5. Clark , T. L . 1977 . A small scale dynamical model using a terrain following coordinate transformation . J. Comput. Phys . 24 , 136 – 215 .  

  6. Crowley , W. P . 1968 . Numerical advection experiments . Mon. Wea. Rev . 96 , 1 – 11 .  

  7. Cullen , M. J. P . 1990 . A test of a semi-implicit integration technique for a fully compressible non-hydrostatic model . Quart. J. Roy. Meteor. Soc . 116 , 1253 – 1258 .  

  8. Doyle , J. D. , Durran , D. R. , Chen , C. , Colle , B. A. , Georgelin , M. , Grubisic , V. , Hsu , W. R. , Huang , C. Y. , Landau , D. , Lin , Y. L. , Poulos , G. S. , Sun , W. Y. , Weber , D. B. Wurtele , M. G. and Xue , M . 2000 . An intercomparison of model predicted wave breaking for the 11 January 1972 Boulder windstorm . Mon. Wea. Rev . 121 , 1493 – 1513 .  

  9. Dudhia , J . 1993 . A nonhydrostatic version of the Penn State-NCAR Mesoscale Model: Validation tests and simulation of an Atlantic cyclone and cold front . Mon. Wea. Rev . 128 , 901 – 914 .  

  10. Durran , D. R . 1986 . Another look at downslope windstorms. Part I: The development of analogs of super-critical flow in an infinitely deep, continuously stratified fluid . J. Atmos. Sci . 43 , 2527 – 2543 .  

  11. Durran , D. R . 1990 . Mountain waves and downslope winds. Atmospheric process over complex terrain, 23. Blumen , W. (ed.). AMS , 59 - 81 .  

  12. Durran , D. R. and Klemp , J. B . 1982 . The effects of moisture on trapped mountain lee waves . Mon. Wea. Rev . 110 , 2490 – 2506 .  

  13. Durran , D. R. and Klemp , J. B . 1983 . A compressible model for the simulation of moist mountain waves . Mon. Wea. Rev . 111 , 2341 – 2361 .  

  14. Durran , D. R. and Klemp , J. B . 1987 . Another look at downslope windstorms. Part II: Nonlinear amplifica-tion beneath wave-overturning layers . J. Atmos. Sci . 44 , 3402 – 3412 .  

  15. Gadd , A. J . 1978 . A split explicit integration scheme for numerical weather prediction . Quart. J. Roy. Meteor. Soc . 104 , 569 – 582 .  

  16. Gill , A. E . 1982 . Atmosphere-ocean dynamics . Academic Press , New York , 662 pp .  

  17. Hodur , R. M . 1997 . The Naval Research Laboratory Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) . Mon. Wea. Rev . 125 , 1414 – 1430 .  

  18. Hsu , W. R. and Sun , W. Y . 1994 . A numerical study of a low-level jet and its accompanying secondary circu-lation in a Mei-Yu system . Mon. Wea. Rev . 122 , 324 – 340 .  

  19. Ikawa , M . 1988 . Comparison of some schemes for non-hydrostatic models with orography . J. Meteor. Soc. Japan . 66 , 753 – 776 .  

  20. Klemp , J. B. and Lilly , D. K . 1975 . The dynamics of wave-induced downslope winds . J. Atmos. Sci . 32 , 320 – 339 .  

  21. Klemp , J. B. and Lilly , D. K . 1980 . Mountain waves and momentum flux GARP Pub. Ser. 23. Orographic effects in planetary flows. ICSU/WMO, 450 pp.  

  22. Klemp , J. B. and Wilhelmson , R . 1978 . The simulation of three-dimensional convective storm dynamics . J. Atmos. Sci . 35 , 1070 – 1096 .  

  23. Kundu , P. K . 1990 . Fluid mechanics . Academic Press , New York , 638 pp .  

  24. Lilly , D. K . 1978 . A severe downslope windstorm and aircraft turbulence induced by a mountain wave . J. Atmos. Sci . 35 , 59 – 77 .  

  25. Ogura , Y. and Phillips , N. A . 1962 . Scale analysis of deep and shallow convection in the atmosphere . J. Atmos. Sci . 19 , 173 – 179 .  

  26. Peltier , W. R. and Clark , T. L . 1979 . The evolution and stability of finite-amplitude mountain waves. Part II: Surface drag and severe downslope windstorms . J. Atmos. Sci . 36 , 1498 – 1529 .  

  27. Pielke , R. A. , Cotton , W. R. , Walko , R. L. , Tremback , C. J. , Lyons , W. A. , Grasso , LD. ., Nicholls , M. E. , Moran , M. D. , Wesley , D. A. , Lee , T. J. and Copeland , J. H. 1992 . A comprehensive meteorological modeling system - RAMS, Meteor. Atmos. Phys . 49 , 69 – 91.  

  28. Pinty , J.-P. , Benoit , R. , Richard , E. and Laprise , R . 1995 . Simple tests of a semi-implicit semi-Lagrangian model on 2D mountain wave problems . Mon. Wea. Rev . 123 , 3042 – 3058 .  

  29. Queney , P . 1948 . The problem of airflow over mountains: A summary of theoretical studies . Bull. Amer. Meteor. Soc . 29 , 16 – 26 .  

  30. Robert , A . 1993 . Bubble convection experiments with a semi-implict formulation of the Euler equations . J. Atmos. Sci . 50 , 1865 – 1873 .  

  31. Scorer , R. S . 1949 . Theory of waves in the lee of moun-tains . Quart. J. Roy. Meteor. Soc . 75 , 41 – 56 .  

  32. Skamarock W. C. and Klemp , J. B . 1992 . The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations . Mon. Wea. Rev . 120 , 2109 – 2127 .  

  33. Smith , R. B . 1979 . The influence of mountains on the atmosphere. In: Advances in Geophysics , vol. 21 ( B. Saltzman ed.), pp. 87 – 230 . Academic Press.  

  34. Smith , R. B . 1985 . On severe downslope winds . J. Atmos. Sci . 42 , 2597 – 2603 .  

  35. Smolarkiewicz , P. K. and Margolin , L. G . 1997 . On forward-in-time differencing for fluids: An Eulerian/semi-Lagrangian nonhydrostatic model for stratified flows . Atmos.-Ocean 35 , 127 – 152 .  

  36. Steppeler , J . 1995 . Comments on “A nonhydrostatic ver-sion of the Penn State-NCAR Mesoscale Model : Val-idation tests and simulations of an Atlantic cyclone and cold front.” Mon. Wea. Rev . 123 , 2572 .  

  37. Sun , W. Y . 1980 . A forward-backward time integration scheme to treat internal gravity waves . Mon. Wea. Rev . 108 , 402 – 407 .  

  38. Sun , W. Y . 1993 . Numerical experiment for advection equation . J. Comput. Physics . 108 , 264 – 271 .  

  39. Sun , W. Y. and Hsu , W. R . 1988 . Numerical study of cold air outbreak over the warm ocean . J. Atmos. Sci . 45 , 1205 – 1227 .  

  40. Sun , W. Y. , Cherm , J. D. , Wu. C. C. and Hsu , W. R. 1991 . Numerical simulation of mesoscale circulation in Taiwan and surrounding area. Mon. Wea. Rev . 119 , 2558 – 2573.  

  41. Tanquay , M. , Robert , A. and Laprise , R . 1990 . A semi-implicit semi-Lagrangian full compressible regional forecast model . Mon. Wea. Rev . 118 , 1970 – 1980 .  

  42. Tapp , M. C. and White , P. W . 1976 . A non-hydrostatic mesoscale model . Quart. J. Roy. Meteor. Soc . 102 , 277 – 296 .  

comments powered by Disqus