Start Submission Become a Reviewer

Reading: The spectra of singular values in a regional model

Download

A- A+
Alt. Display

Original Research Papers

The spectra of singular values in a regional model

Authors:

Ronald M. Errico ,

National Center for Atmospheric Research, US
X close

Martin Ehrendorfer,

Institute for Meteorology and Geophysics, University of Vienna, AT
X close

Kevin Raeder

National Center for Atmospheric Research, US
X close

Abstract

Large portions of the spectra of singular values are determined for both moist and dry versions of a tangent linear, regional model for 4 different synoptic cases. Norms considered include the usual energy norm and versions of a norm measuring only the energy in some set of rotational mode perturbations. At most, only a few percent of the singular vectors possible with any of the norms are growing ones. Inclusion of moist physics in the tangent linear model greatly affects the leading singular vectors but does not increase the number of growing singular vectors much. Most singular vectors are damping ones, and therefore random perturbations drawn from a white-noise distribution will likely damp during the 24-h forecast periods considered. Only a few singular vectors are required to explain a significant portion of the final-time variance of such perturbations, however, because the leading singular values are so large compared with the rest. The truncated rotational mode norm is shown to be very useful for investigating these properties.

How to Cite: Errico, R.M., Ehrendorfer, M. and Raeder, K., 2001. The spectra of singular values in a regional model. Tellus A: Dynamic Meteorology and Oceanography, 53(3), pp.317–332. DOI: http://doi.org/10.3402/tellusa.v53i3.12196
  Published on 01 Jan 2001
 Accepted on 5 Dec 2000            Submitted on 28 Mar 2000

References

  1. Barkmeijer , J. , Buizza , R. , Palmer , T. N. , Puri , K. and Mahfouf , J.-F . 2001 . Tropical singular vectors com-puted with linearized diabatic processes. Quart. J. Roy. Meteor. Soc . 127A , in press.  

  2. Bourke , W. and McGregor , J. L . 1983 . A nonlinear ver-tical mode initialization scheme for a limited area prediction model . Mon. Wea. Rev . 111 , 2285 – 2297 .  

  3. Buizza , R . 1994 . Sensitivity of optimal unstable struc-tures . Quart. J. Roy. Meteor. Soc . 120 , 429 – 451 .  

  4. Buizza , R. , Tribbia , J. , Molteni , F. and Palmer , T. N. 1993 . Computation of optimal unstable structures for a numerical weather prediction model. Tellus 45A , 388 – 407.  

  5. Cohn , S. E. and Todling , R . 1996 . Approximate data assimilation schemes for stable and unstable dynamics . J. Meteor. Soc. Japan 96 , 63 – 75 .  

  6. Davies , H. C. and Turner , R. E . 1977 . Updating predic-tion models by dynamical relaxation: an examination of the technique . Quart. J. Roy. Meteor. Soc . 103 , 225 – 245 .  

  7. Ehrendorfer , M . 1997 . Predicting the uncertainty of numerical weather forecasts . Meteorol. Zeitschrift 6 , 147 – 183 .  

  8. Ehrendorfer , M. and Errico , R. M . 1995 . Mesoscale pre-dictability and the spectrum of optimal perturbations . J. Atmos. Sci . 52 , 3475 – 3500 .  

  9. Ehrendorfer , M. , Errico , R. M. and Raeder , K. D . 1999 . Singular-vector perturbation growth in a primitive-equation model with moist physics . J. Atmos. Sci . 56 , 1627 – 1648 .  

  10. Ehrendorfer , M. and Tribbia , J. J . 1997 . Optimal predic-tion of forecast error covariances through singular vectors . J. Atmos. Sci . 54 , 286 – 313 .  

  11. Errico , R. M . 1997 . What is an adjoint model . Bull. Am. Meteor. Soc . 78 , 2577 – 2591 .  

  12. Errico , R. M . 2000a . Interpretations of the total energy and rotational energy norms applied to determination of singular vectors . Quart. J. Roy. Meteor. Soc . 126A , 1581 – 1599 .  

  13. Errico , R. M . 2000b . The dynamical balance of singular vectors in a primitive equation model . Quart. J. Roy. Meteor. Soc . 126A , 1601 – 1618 .  

  14. Errico , R. M. and Baumhefner , D. P . 1987 . Predictability experiments using a high-resolution limited-area model . Mon. Wea. Rev . 115 , 488 – 504 .  

  15. Errico , R. M. and Raeder , K. D . 1999 . An examination of the accuracy of the linearization of a mesoscale model with moist physics . Quart. J. Roy. Meteor. Soc . 125 , 169 – 195 .  

  16. Errico , R. M. , Raeder , K. and Vukiéeviá , T . 1994 . Description of the NCAR mesoscale adjoint modeling system version 1 (MAMS1). NCAR Technical Note, NCAR/TN-410 + IA. (Available from the National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307, USA.)  

  17. Farrell , B. F . 1989 . Optimal excitation of baroclinic waves . J. Atmos. Sci . 46 , 1193 – 1206 .  

  18. Farrell , B. F . 1990 . Small error dynamics and the predict-ability of atmospheric flows . J. Atmos. Sci . 47 , 2409 – 2416 .  

  19. Farrell , B. F. and Ioannou , P. J . 1996a . Generalized stability theory. Part I: Autonomous operators . J. Atmos. Sci . 53 , 2025 – 2040 .  

  20. Farrell , B. F. and Ioannou , P. J . 1996b . Generalized stability theory. Part II: Nonautonomous operators . J. Atmos. Sci . 53 , 2041 – 2053 .  

  21. Fillion , L. and Mahfouf , J.-F . 2000 . Coupling of moist convective and stratiform precipitation processes for variational data assimilation . Mon. Wea. Rev . 128 , 109 – 124 .  

  22. Gelaro , R. , Buizza , R. , Palmer , T. N. and Klinker , E . 1997 . Sensitivity analysis of forecast errors and the construction of optimal perturbations using singular vectors . J. Atmos. Sci . 55 , 1012 – 1037 .  

  23. Gelaro , R. , Langland , R. H. , Rohaly , G. D. and Ros-mond , T. E . 1999 . An assessment of the singular vector approach to targeted observing using the FASTEX data set . Quart. J. Roy. Meteor. Soc . 125 , 3299 – 3327 .  

  24. Grimes , R. G. , Lewis , J. G. and Simon , H. D . 1994 . A shifted block Lanczos algorithm for solving sparse symmetric generalized eigenproblems . SIAM J. Matrix Analysis and Applications 15 , 228 – 272 .  

  25. Mahfouf , J.-F . 1999 . Influence of physical processes on the tangent—linear approximation . Tellus 51A , 147 – 166 .  

  26. Moorthi , S. and Suarez , M. J . 1992 . Relaxed Arakawa—Schubert: A parameterization of moist convection for general circulation models . Mon. Wea. Rev . 120 , 978 – 1002 .  

  27. Mullen , S. L. and Baumhefner , D. P . 1989 . The impact of initial condition uncertainty on numerical simulations of large-scale explosive cyclogenesis. Mon. Wea. Re v . 117 , 2800 – 2821 .  

  28. Palmer , T. N. , Gelaro , R. , Barkmeijer , J. and Buizza , R . 1998 . Singular vectors, metrics, and adaptive observa-tions. J. Atmos. Sc i . 55 , 633 – 653 .  

  29. Pu , Z.-X. , Kalnay , E. , Sela , J. and Szunyogh , I. 1997 . Sensitivity of forecast errors to initial conditions with a quasi-inverse linear method. J. Atmos. Sci . 125 , 2479 – 2503.  

  30. Reynolds , C. A. and Palmer , T. N . 1998 . Decaying singu-lar vectors and their impact on analysis and forecast correction. J. Atmos. Sc i . 55 , 3005 – 3023 .  

  31. Strang , G . 1986 . Introduction to applied mathematics . Wellesley-Cambridge Press, 758 pp.  

  32. Talagrand , 0. 1981 . A study of the dynamics of four-dimensional data assimilation . Tellus 33 , 43 – 60 .  

comments powered by Disqus