Start Submission Become a Reviewer

Reading: Identifying signals from intermittent low-frequency behaving systems

Download

A- A+
Alt. Display

Original Research Papers

Identifying signals from intermittent low-frequency behaving systems

Authors:

A. Hannachi ,

Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, GB
X close

M. R. Allen

Atmospheric, Oceanic and Planetary Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, GB
X close

Abstract

An approach is presented to recover a true signal from an intermittent regime-like behaving noisy system given an estimate of the noise covariance CN. The method is based on minimizing the noise probability distribution on isosurfaces of the data probability distribution and involves the spectrum of the matrix CDCN-1 where CD represents an estimate of the data covariance within a given regime. In single channel, i.e., one-dimensional, case the intermittent low-frequency time series is split according to the regime level. For each regime the obtained sub-sampled time series is first centred by removing its time mean and then projected onto a higher dimensional space using the method of the delay coordinates. The oscillation for each regime level is then obtained as the leading eigenvector of CDCN-1. In the multi-channel case the signal pattern is obtained in the same way locally in each cluster forming the data. The approach is first tested with the Lorenz system yielding the correct oscillation. The method is then applied to the Pacific 500-hPa geopotential height from a set of multidecadal integrations with the General Circulation Model (GCM) of the Hadley Centre, forced with observed Sea Surface Temperature (SST), in order to identify the nonlinear atmospheric response associated with El Nino Southern Oscillation (ENSO).

How to Cite: Hannachi, A. and Allen, M.R., 2001. Identifying signals from intermittent low-frequency behaving systems. Tellus A: Dynamic Meteorology and Oceanography, 53(4), pp.469–480. DOI: http://doi.org/10.3402/tellusa.v53i4.12199
  Published on 01 Jan 2001
 Accepted on 18 Dec 2000            Submitted on 17 Feb 2000

References

  1. Allen , M. R. and L. A. Smith , 1997 . Optimal filtering in singular spectrum analysis . Phys. lett. A 234 , 419 – 428 .  

  2. Anderson , B. D. and J. B. Moore , 1979 . Optimal filtering . Prentice Hall. New Jersey.  

  3. Barnston , A. G. and R. E. Livezey , 1987 . Classification, seasonality and persistence of low-frequency atmo-spheric circulation patterns. Mon. Weather Re v . 115 , 1083 – 1126 .  

  4. Bell , G. D. and M. S. Halpert , 1995 . Interseasonal and interannual variability: 1986 to 1993, NOAA Atlas 12, 256 pp . U.S. Dept. Commer., Washington , D.C .  

  5. Broomhead , D. S. and G. King , 1986a . Extracting qualit-ative dynamics from experimental data . Physica D 20 , 217 – 236 .  

  6. Broomhead , D. S. and G. King , 1986b. On the qualitative analysis of experimental dynamical systems. Nonlinear phenomena and chaos , S. Sarkar , Ed. Adam Hilger , pp. 113 - 144 .  

  7. Burgers , G. and D. B. Stephenson , 1999 : The “Normal-ity” of El Nino . Geophys. Res. Lett . 26 , 1027 – 1030 .  

  8. Charney , J. G. and J. G. DeVore , 1979 . Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sc i . 36 , 1205 – 1216 .  

  9. Cheng , X. and J. M. Wallace , 1993 . Cluster analysis of the Northern Hemisphere wintertime 500-hPa height field: Spatial patterns. J. Atmos. Sc i . 50 , 2674 – 2696 .  

  10. Corti , S. , F. Molteni and T. N. Palmer , 1999 . Signature of recent climate change in frequencies of natural atmospheric circulation regimes . Nature 398 , 799 – 802 .  

  11. Davies , J. R. , D. P. Rowell and C. K. Folland , 1997 . North Atlantic and European seasonal predictability using an ensemble of multi-decadal AGCM simula-tions . Int. J. Climatology 17 , 1263 – 1284 .  

  12. Everitt , B. S. and D. J. Hand , 1981 . Finite mixture distri-butions . Chapmann and Hall. London.  

  13. Fraedrich , K . 1986 . Estimating the dimension of weather and climate attractors. .1 . Atmos. Sc i . 43 , 419 – 432 .  

  14. Ghil , M. and S. Childress , 1987 . Topics in geophysical fluid dynamics: atmospheric dynamics, dynamo theory and climate dynamics. Springer-Verlag. New York.  

  15. Haines , K. and A. Hannachi , 1995 . Weather regimes in the Pacific from a GCM . J. Atmos. Sci . 52 , 2444 – 2462 .  

  16. Hannachi , A . 1997 . Low-frequency variability in a GCM: three-dimensional flow regimes and their dynamics . J. Climate 10 , 1357 – 1379 .  

  17. Hannachi , A . 2000 . Probabilistic-based approach to optimal filtering . Phys. Rev. E 61 , 3610 – 3619 .  

  18. Hannachi , A . 2001 . Toward a nonlinear identification of the atmospheric response to ENSO . J. Climate 14 , 2138 – 2149 .  

  19. Hasselmann , K . 1999 . Climate change: Linear and non-linear signature . Nature 398 , 755 – 756 .  

  20. Hoerling , M. P. , A. Kumar and M. Zhong , 1997 . El Nifio, La Nifia, and the nonlinearity of their telecon-nections . J. Climate 10 , 1769 – 1786 .  

  21. Kimoto M. and M. Ghil , 1993 . Multiple flow regimes in the Northern Hemisphere winter: Part II: Sectorial regimes and preferred transitions . J. Atmos. Sci . 50 , 2645 – 2673 .  

  22. Leith , C. E . 1973 . The standard error of time-average estimates of climatic means . J. Appl. Meteor . 12 , 1066 – 1069 .  

  23. Livezey , R. E. , A. Leetmaa , M. Mautani , H. Rui , N. Ji and A. Kumar , 1997 . Teleconnective response of the Pacific-North American region atmosphere to large central equatorial Pacific SST anomalies . J. Climate 10 , 1787 – 1820 .  

  24. Lorenz , E. N . 1963 . Deterministic nonperiodic flow . J. Atmos. Sci . 20 , 130 – 141 .  

  25. Lorenz , E. N . 1968 . Climatic determinism . Meteor. Monogr . 8 , 1 – 3 .  

  26. Marshall , J. C. and F. Molteni , 1993 . Towards a dynam-ical understanding of planetary-scale flow regimes . J. Atmos. Sci . 50 , 1792 – 1818 .  

  27. Molteni , F. L. Ferranti , T. N. Palmer and P . Viterbo , 1993 . A dynamical interpretation of the global response to equatorial Pacific SST anomalies . J. Climate 6 , 777 – 795.  

  28. Namias , J . 1964 . Seasonal persistence and recurrence of European blocking during 1958-1960 . Tellus 16 , 394 – 407 .  

  29. North , GR. ., T. L. Bell , R. F. Cahalan , and F. G. Moeng , 1982 : Sampling errors in the estimation of the empirical orthogonal functions . Mon. Wea. Rev . 110 , 699 – 706.  

  30. Palmer , T. N . 1999 . A nonlinear dynamical perspective on climate prediction . J. Climate 12 , 575 – 591 .  

  31. Silverman , B. W . 1994 . Density estimation for statistics and data analysis . Chapman and hall. London.  

  32. Takens , F . 1981 . Detecting strange attractors in turbu-lence . Lecture notes in mathematics , D. A. Rand and L.-S. Young , eds. Springer Verlag. Berlin.  

  33. Thacker , W. C . 1996 . Metric-based principal compon-ents: data uncertainties . Tellus 48A , 584 – 592 .  

  34. Trenberth , K. E. , G. W. Branstator , D. Karoly , A. Kumar , N.-C. Lau , and C. Ropelewski , 1998 . Progress during TOGA in understanding and modelling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res . 103 , 14 , 291 – 14 , 324.  

  35. Ulrych , T. J. and T. N. Bishop , 1975 . Maximum entropy spectral analysis and autoregressive decomposition . Rev. Geophys. and Space Phys . 13 , 183 – 200 .  

  36. Vautard , R. , P. Yiou and M. Ghil , 1992. Singular spec-trum analysis: a toolkit for short, noisy and chaotic signals. Physica D 58 , 95 – 126.  

  37. Venzke , S. , M. R. Allen , R. T. Sutton and D. P. Rowell , 1999 . The atmospheric response over the North Atlan-tic to decadal changes in sea surface temperature . J. Climate 12 , 2562 – 2584 .  

  38. Wallace , J. M. and D. S. Gutzler , 1981 . Teleconnections in the geopotential height field during the Northern Hemisphere winter . Mon. Weath. Rev . 109 , 784 – 812 .  

comments powered by Disqus