Start Submission Become a Reviewer

Reading: Diagnosing cyclogenesis by partitioning energy and potential enstrophy in a linear quasi-geo...

Download

A- A+
Alt. Display

Original Research Papers

Diagnosing cyclogenesis by partitioning energy and potential enstrophy in a linear quasi-geostrophic model

Authors:

Daniel Hodyss ,

Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, US
X close

Richard Grotjahn

Atmospheric Science Program, Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, US
X close

Abstract

Baroclinic development is studied with 2 linear, quasi-geostrophic models. One model is theEady model, the other uses more realistic wind, density, Coriolis, and static stability. Initialvaluesolutions are diagnosed using time series of potential enstrophy (H), total energy (E), thecomponents of H and E, and the amplitude norm. Two vertical structures for the initial conditionare used for both models. One initial condition is representative of a class of initial conditionsstudied previously having enhanced nonmodal growth (NG). The other initial conditionapproximates observed conditions prior to cyclogenesis. Results are shown for the most unstablenormal mode wavelength of each model. The growth rates of the components of H and E evolvequite differently for different initial states and models tested. NG in H is shown to be sensitiveto the contribution of the boundary potential vorticity (BPV) of the initial state; small adjustmentsin eddy structure at the boundary significantly alter BPV and H growth rates. Theamount of NG is related to how far BPV present initially differs from the asymptotic normalmode. The effect upon NG of each approximation present in the Eady model (but not in theother model) are considered. Using realistic mean flow shear, static stability, or compressibilitycan significantly reduce NG but including linearly varying Coriolis parameter did not. Twoconceptual models of NG are considered. Growth by increasingly favorable superpositionremains relevant. Growth by “tilting into the vertical” is shown to be incorrect.

How to Cite: Hodyss, D. and Grotjahn, R., 2001. Diagnosing cyclogenesis by partitioning energy and potential enstrophy in a linear quasi-geostrophic model. Tellus A: Dynamic Meteorology and Oceanography, 53(5), pp.567–577. DOI: http://doi.org/10.3402/tellusa.v53i5.12227
  Published on 01 Jan 2001
 Accepted on 6 Apr 2001            Submitted on 8 Jun 2000

References

  1. Bretherton , F. P . 1966 . Critical layer instability in baro-clinic flows . Quart. J. Roy. Met. Soc . 92 , 325 – 334 .  

  2. Charney , J. G . 1947 . The dynamics of long waves in a baroclinic westerly current . J. Meteor . 4 , 135 – 162 .  

  3. Davies , H. and Bishop , C . 1994 . Eady edge waves and rapid development. J. Atmos. Sc i . 51 , 1930 – 1946 .  

  4. Dong , B. and James , I . 1997 . The effect of barotropic shear on baroclinic instability Part II: The initial value problem . Dyn. Atmos. Oceans 25 , 169 – 190 .  

  5. Eady , E. T . 1949 . Long waves and cyclone waves . Tellus 1 , 33 – 52 .  

  6. Farrell , B . 1982 . The initial growth of disturbances in a baroclinic flow. J. Atmos. Sc i . 39 , 1663 – 1686 .  

  7. Farrell , B . 1984 . Modal and nonmodal baroclinic waves. J. Atmos. Sc i . 41 , 668 – 673 .  

  8. Farrell , B . 1985 . Transient growth of baroclinic waves. J. Atmos. Sc i . 42 , 2718 – 2727 .  

  9. Fischer , C . 1998 . Linear amplification and error growth in the 2D Eady problem with uniform potential vorti-city. J. Atmos. Sc i . 55 , 3363 – 3380 .  

  10. Green , J . 1960 . A problem in baroclinic stability . Quart. J. Roy. Meteor. Soc . 86 , 237 – 251 .  

  11. Grotjahn , R . 1980 . Linearized tropopause dynamics and cyclone development. J. Atmos. Sci . 37 , 2396 - 2406. Grotjahn , R. 1993 . Global atmospheric circulations: obser-vations and theories . Oxford University Press, NY. 430 pp.  

  12. Grotjahn , R . 1996 . Composite trough evolution of selected west pacific extratropical cyclones. Mon. Wea. Re v . 124 , 1470 – 1479 .  

  13. Grotjahn , R. and Tribbia , J . 1995 . On the mechanism of cyclogenesis as deduced from vertical axis tilts . Tellus 47A , 629 – 637 .  

  14. Grotjahn , R. , Chen , M. and Tribbia , J . 1995a . Linear instability with Ekman and interior friction. Part I: Quasigeostrophic eigenanalysis. J. Atmos. Sc i . 52 , 754 – 763 .  

  15. Grotjahn , R. , Pedersen , R. and Tribbia , J . 1995b . Linear instability with Ekman and interior friction. Part II: Initial value analysis. J. Atmos. Sc i . 52 , 764 – 777 .  

  16. Hakim , G . 2000 . Role of nonmodal growth and nonlin-earity in cyclogenesis initial-value problems. J. Atmos. Sc i . 57 , 2951 – 2967 .  

  17. Joly , A . 1995 . The stability of steady fronts and the adjoint method: nonmodal frontal waves. J. Atmos. Sc i . 52 , 3082 – 3108 .  

  18. Lindzen , R. and Tung , K . 1978 . Wave overreflection and shear instability. J. Atmos. Sc i . 35 , 1626 – 1632 .  

  19. O’Brien , E . 1992 . Optimal growth rates in the quasigeo-strophic initial value problem. J. Atmos. Sc i . 49 , 1557 – 1570 .  

  20. Rotunno , R. and Fantini , M . 1989 . Petterssen’s type B cyclogenesis in terms of discrete, neutral Eady modes. J. Atmos. Sc i . 46 , 3599 – 3604 .  

  21. Rotunno , R. and Bao , J.-W . 1996 . A case study of cyclo-genesis using a model hierarchy. Mon. Wea. Re v . 124 , 1051 – 1066 .  

  22. Simmons , A. and Hoskins , B . 1979 . The upstream and downstream development of unstable baroclinic waves. J. Atmos. Sc i . 36 , 1239 – 1254 .  

  23. U.S. Committee on Extension to the Standard Atmo-sphere , 1976. US Standard Atmosphere , 1976 , U.S. Govt. Print. Off. Washington , D.C. , 227 pp.  

comments powered by Disqus