Start Submission Become a Reviewer

Reading: Eliminating finite-amplitude non-physical oscillations in the time evolution of adjoint mode...

Download

A- A+
Alt. Display

Original Research Papers

Eliminating finite-amplitude non-physical oscillations in the time evolution of adjoint model solutions introduced by the leapfrog time-integration scheme

Authors:

X. Zou ,

Florida State University, Tallahassee, Florida, US
About X.
Department of Meteorology, Florida State University, 404 Love Building, Tallahassee, FL 32306-4520, USA.
X close

K. Sriskandarajah,

Florida State University, Tallahassee, Florida, US
X close

W. Yu,

Florida State University, Tallahassee, Florida, US
X close

S.-Q. Zhang

Florida State University, Tallahassee, Florida, US
X close

Abstract

This note provides a detailed theoretical derivation for the removal of non-physical finiteamplitudecomputational oscillations from the solution of the adjoint of a discretized modelusing the leapfrog finite-difference scheme. Numerical results are shown using a 1-dimensionalshallow water equation model.

How to Cite: Zou, X., Sriskandarajah, K., Yu, W. and Zhang, S.-Q., 2001. Eliminating finite-amplitude non-physical oscillations in the time evolution of adjoint model solutions introduced by the leapfrog time-integration scheme. Tellus A: Dynamic Meteorology and Oceanography, 53(5), pp.578–584. DOI: http://doi.org/10.3402/tellusa.v53i5.12228
  Published on 01 Jan 2001
 Accepted on 5 Apr 2001            Submitted on 11 Jul 2000

References

  1. Buizza , R. , Tribbia , J. , Molteni , F. and Palmer , T. N . 1993 . Computation of optimal unstable structures for a numerical weather prediction model . Tellus 45A , 388 – 407 .  

  2. Haltiner , G. J. and Williams , R. T . 1980 . Numerical pre-diction and dynamic meteorology , 2nd edition. John Wiley & Sons, Inc. pp. 477 ( ISBN 0-471-05971-4 ).  

  3. Le Dimet , F. X. and Talagrand , O . 1986 . Variational algorithms for analysis and assimilation of meteorolo-gical observations: Theoretical aspects. Tellus 38A , 97 - 110 .  

  4. Nering , E. D . 1970 . Linear algebra and matrix theory , 2nd edition. New York. 352 pp.  

  5. Parrett , C. A. and Cullen , M. J. P . 1984 . Simulation of hydraulic jumps in the presence of rotation and moun-tains . Quart. J. R. Met. Soc . 110 , 147 – 165 .  

  6. Sirkes , Z. and Tziperman , E . 1997 . Finite difference of adjoint or adjoint of finite difference? Mon. Wea. Re v . 125 , 3373 – 3378 .  

  7. Zou , X. , Vandenberghe , F. , Pondeca , De, M. and Kuo , Y.-H . 1997 . Introduction to adjoint techniques and the mm5 adjoint modeling system . NCAR Technical note, 1997, NCAR/TN-435-STR, p p. 122.  

comments powered by Disqus