Start Submission Become a Reviewer

Reading: Changes in average and extreme precipitation in two regional climate model experiments

Download

A- A+
Alt. Display

Original Research Papers

Changes in average and extreme precipitation in two regional climate model experiments

Authors:

Jouni Räisänen ,

Rossby Centre, Swedish Meteorological and Hydrological Institute, S-60176 Norrköping, SE
X close

Rune Joelsson

Rossby Centre, Swedish Meteorological and Hydrological Institute, S-60176 Norrköping, SE
X close

Abstract

Two regional climate model experiments for northern and central Europe are studied focussingon greenhouse gas-induced changes in heavy precipitation. The average yearly maximum onedayprecipitation Pmax shows a general increase in the whole model domain in both experiments, although the mean precipitation Pmean decreases in the southern part of the area, especially inone of the experiments. The average yearly maximum six-hour precipitation increases evenmore than the one-day Pmax, suggesting a decrease in the timescale of heavy precipitation. Thecontrast between the Pmean and Pmax changes in the southern part of the domain and the lackof such a contrast further north are affected by changes in wet-day frequency that stem, at leastin part, from changes in atmospheric circulation. However, the yearly extremes of precipitationexhibit a larger percentage increase than the average wet-day precipitation. The signal-to-noiseaspects of the model results are also studied in some detail. The 44 km grid-box-scale changesin Pmax are very heavily affected by inter-annual variability, with an estimated standard errorof about 20% for the 10-year mean changes. However, the noise in Pmax decreases sharplytoward larger horizontal scales, and large-area mean changes in Pmax can be estimated withsimilar accuracy to those in Pmean. Although a horizontal averaging of model results smoothsout the small-scale details in the true climate change signal as well, this disadvantage is, in thecase of Pmax changes, much smaller than the advantage of reduced noise.

How to Cite: Räisänen, J. and Joelsson, R., 2001. Changes in average and extreme precipitation in two regional climate model experiments. Tellus A: Dynamic Meteorology and Oceanography, 53(5), pp.547–566. DOI: http://doi.org/10.3402/tellusa.v53i5.12231
  Published on 01 Jan 2001
 Accepted on 3 May 2001            Submitted on 1 Nov 2000

References

  1. Christensen , O. B. , Christensen , J. H. , Machenhauer , B. and Botzet , M. 1998 . Very high-resolution regional climate simulations over Scandinavia — present cli-mate. J. Climate 11 , 3204 – 3229.  

  2. Easterling , D. R. , Evans , J. L. , Groisman, P. Ya. , Karl , T. R. , Kunkel , K. E. and Ambenje , P . 2000 . Observed variability and trends in extreme climate events: a brief review . Bull. Am. Meteorol. Soc . 81 , 417 – 425 .  

  3. Eerola , K. , Salmond , D. , Gustafsson , N. , Garcia-Moya , J.-A. , Lönnberg , P. and Järvenoja , S . 1997 . A parallel version of the HIRLAM forecast model: Strategy and results . In Hoffmann, G . -R. and Kreitz, N. (eds) : Pro-ceedings of the seventh ECMWF Workshop on the use of parallel processors in meteorology. World Scientific Publishing, Singapore , 134 – 143 .  

  4. Frei , C. , Schär , C. , Ltithi , D. and Davies , H. C . 1998 . Heavy precipitation processes in a warmer climate . Geophys. Res. Lett . 25 , 1431 – 1434 .  

  5. Gordon , H. B. , Whetton , P. H. , Pittock , A. B. , Fowler , A. M. and Haylock , M. R . 1992 . Simulated changes in daily rainfall intensity due to the enhanced green-house effect: implications for extreme rainfall events . Clim. Dynam . 8 , 83 – 102 .  

  6. Gregory , J. M. and Mitchell , J. F. B . 1995 . Simulation of daily variability of surface temperature and precip-itation over Europe in the current and 2 x CO2 cli-mates using the UKMO climate model . Q. J. R. Meteorol. Soc . 121 , 1451 – 1476 .  

  7. Hennessy , K. J. , Gregory , J. M. and Mitchell , J. F. B . 1997 . Changes in daily precipitation under enhanced greenhouse conditions . Clim. Dynam . 13 , 667 – 680 .  

  8. Hulme , M. , Conway D. , Jones , P. D. , Jiang , T. , Zhou , X. , Barrow , E. M. and Turney , C . 1995 . A 1961-90 Grid-ded Surface Climatology for Europe . Climatic Research Unit, University of East Anglia, Norwich, United Kingdom, 51 pp. + maps.  

  9. Johns , T. C. , Carnell , R. E. , Crossley , J. F. , Gregory , J. M. , Mitchell , J. F. B. , Senior , C. A. , Tett , S. F. B. and Wood , R. A . 1997 . The second Hadley Centre coupled ocean—atmosphere GCM: model description, spinup and validation . Clim. Dynam . 13 , 103 – 134 .  

  10. Jones , R. G. , Murphy , J. M. , Noquer , M. and Keen , A. B . 1997 . Simulation of climate change over Europe using a nested regional-climate model. II: Comparison of driving and regional model responses to a doubling of carbon dioxide . Q. J. R. Meteorol. Soc . 123 , 265 – 292 .  

  11. Källén , E. (ed) 1996 . HIRLAM documentation manual. System 2.5 . 178 pp. + 55 pp. appendix. Available from SMHI, S-60176 Norrk6ping, Sweden.  

  12. Kuo , H. L . 1965 . On the formation and intensification of tropical cyclone through latent heat release by cumulus convection. J. Atmos. Sc i . 22 , 40 – 63 .  

  13. Kuo , H. L . 1974 . Further studies of the parameterization of the influence of cumulus convection on large-scale flow. J. Atmos. Sc i . 31 , 1232 – 1240 .  

  14. Ljungemyr , P. , Gustafsson , N. and Omstedt , A . 1996 . Parameterization of lake thermodynamics in a high resolution weather forecasting model . Tellus 48A , 608 – 621 .  

  15. Machenhauer , B. , Windelband , M. , Botzet , M. , Chris-tensen , J. H. , Déqué , M. , Jones , R. G. , Ruti , P. M. and Visconti , G . 1998 . Validation and analysis of regional present-day climate and climate change simulations over Europe. Max-Planck-Institut far Meteorologie, Report No. 275, Hamburg , 87 pp. + figures and tables.  

  16. Meehl , G. A. , Zwiers , F. , Evans , J. , Knutson , T. , Mearns , L. and Whetton , P . 2000 . Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change . Bull. Am. Meteorol. Soc . 81 , 427 – 436 .  

  17. Mitchell , J. F. B. and Johns , T. C . 1997 . On modification of global warming by sulphate aerosols . J. Climate 10 , 245 – 267 .  

  18. Noda , A. and Tokioka , T . 1989 . The effect of doubling of CO2 concentration on convective and non-con-vective precipitation in a general circulation model coupled with a simple mixed layer ocean model . J. Meterol. Soc. Jpn . 67 , 1057 – 1069 .  

  19. Oberhuber , J. M . 1993 . Simulation of the Atlantic circu-lation with a coupled sea ice-mixed layer-isopycnal general circulation model. Part I: Model description . J. Phys. Oceanogr . 22 , 808 – 829 .  

  20. Omstedt , A . 1999 . Forecasting ice on lakes, estuaries and shelf seas. In: Ice physics in the natural and endangered environment (eds J. S. Wettlaufer , J. G. Dash and N. Untersteiner ) , NATO ASI Vol I 56, Springer-Verlag, Berlin, Heidelberg, pp. 185 - 208 .  

  21. Omstedt , A. and Nyberg , L . 1996 . Response of Baltic Sea ice to seasonal, interannual forcing and climate change . Tellus 48A , 644 – 662 .  

  22. Parey , S . 1994 . Simulations de trente ans 1 x CO2, 2 x CO2, 3 x CO2 avec le modele du LMD (64 x 50 x 11) premiers resultats. EDF, Directions des Etudes et Reserches, HE-33/94/008, 103 pp. Available from Electricité de France, Groupe Météorologie et Climat, 6, Quai Watier, Boite Postale 49, F-78401 Chatou Cedex, France.  

  23. Preisendorfer , R. W. and Barnett , T. P . 1983 . Numerical model reality intercomparison tests using small sample statistics . J. Atmos. Sci . 40 , 1884 – 1896 .  

  24. Raisanen , P. , Rummukainen , M. and Raisanen , J . 2000 . Modification of the HIRLAM radiation scheme for use in the Rossby Centre regional atmospheric climate model. Report No. 49 , Department of Meteorology, University of Helsinki, Finland, 71 pp.  

  25. Raisanen , J. , Rummukainen , M. and Ullerstig , A . 2001 . Downscaling of greenhouse gas induced climate change in two GCMs with the Rossby Centre regional climate model for northern Europe . Tellus 53A , 168 – 192 .  

  26. Roeckner , E. , Arpe , K. , Bengtsson , L. , Christoph , M. , Claussen , M. , Dilmenil , L. , Esch , M. , Giorgetta , M. , Schlese , U. and Schulzweida , U . 1996 . The atmo-spheric general circulation model ECHAM-4: Model description and simulation of present-day climate. Max-Planck-Institut far Meteorologie, Report No. 218, Hamburg, Germany, 90 pp.  

  27. Roeckner , E. , Bengtsson , L. , Feichter , J. , Lelieveld , J. and Rodhe , H . 1999 . Transient climate change simulations with a coupled atmosphere—ocean GCM including the tropospheric sulfur cycle. J. Climate , 12 , 3004 - 3032.  

  28. Rogers , R. R. and Yau , M. K. 1989 . A short course in cloud physics , third edition. Pergamon Press , Oxford , 293 pp.  

  29. Rummukainen , M. , Raisanen , J. , Bringfelt , B. , Ullerstig , A. , Omstedt , A. , Willén , U. , Hansson , U. and Jones , C . 2001 . A regional climate model for northern Europe — model description and results from the downscaling of two GCM control simulations . Clim. Dynam . 17 , 339 – 359 .  

  30. Sundqvist , H . 1993 . Inclusion of ice phase of hydro-meteors in cloud parameterization for mesoscale and largescale models . Beitr. Phys. Atmos . 66 , 137 – 147 .  

  31. Sundqvist , H. , Berge , E. and Kristjánsson , J. E . 1989 . Condensation and cloud parameterization studies with a mesoscale numerical weather prediction model . Mon. Wea. Rev . 117 , 1641 – 1657 .  

  32. von Storch , H. and Zwiers , F. W . 1999 . Statistical ana-lysis in climate research . Cambridge University Press, 484 pp.  

  33. Whetton , P. H. , Fowler , A. M. , Haylock , M. R. and Pittock , A. B . 1993 . Implications of climate change due to the enhanced greenhouse effect on floods and droughts in Australia . Clim. Change 25 , 289 – 317 .  

  34. Zwiers , F. W. and Kharin , V. V . 1998 . Changes in the extremes of the climate simulated by the CCC GCM2 under CO2 doubling . J. Climate 11 , 2200 – 2222 .  

comments powered by Disqus