Start Submission Become a Reviewer

Reading: Freshwater forcing as a booster of thermohaline circulation

Download

A- A+
Alt. Display

Original Research Papers

Freshwater forcing as a booster of thermohaline circulation

Authors:

Johan Nilsson ,

Department of Meteorology, Stockholm University, SE
X close

Gösta Walin

Department of Oceanography, Göteborg University, SE
X close

Abstract

Making use of a simple two-layer model, we analyze the impact of freshwater forcing on thethermohaline circulation. We consider the forward-type circulation dominated by thermal forcing, implying that the freshwater forcing acts to reduce the density contrast associated withthe equator-to-pole temperature contrast (prescribed in the model). The system is described bytwo variables: the depth of the upper layer (H) and the density contrast between the upper and lower layer (Δp), which decreases with salinity contrast. The rate of poleward flow of lightsurface water and the diapycnal flow (i.e., upwelling) driven by widespread small-scale mixingare both modeled in terms of H and Dr. Steady states of thermohaline circulation are foundwhen these two flows are equal. The representation of the diapycnal flow (MD) is instrumentalfor the dynamics of the system. We present equally plausible examples of a physically basedrepresentation of MD for which the thermohaline circulation either decreases or increases withdensity contrast. In the latter case, contrary to the traditional wisdom, the freshwater forcingamplifies the circulation and there exists a thermally dominated equilibrium for arbitrary intensityof freshwater forcing. Here, Stommel’s famous feedback between circulation and salinitycontrast is changed from a positive to a negative feedback. The interaction of such a freshwaterboosted thermohaline circulation with the climate system is fundamentally different from whatis commonly assumed, an issue which is briefly addressed.

How to Cite: Nilsson, J. and Walin, G., 2001. Freshwater forcing as a booster of thermohaline circulation. Tellus A: Dynamic Meteorology and Oceanography, 53(5), pp.629–641. DOI: http://doi.org/10.3402/tellusa.v53i5.12232
  Published on 01 Jan 2001
 Accepted on 27 Apr 2001            Submitted on 1 Nov 2000

References

  1. Boyle , E. A. and Keigwin , L . 1987 . North Atlantic ther-mohaline circulation during the past 20,000 years linked to high-latitude surface temperature . Nature 330 , 35 – 40 .  

  2. Brass , G. W. , Southam , J. R. and Peterson , W. H . 1982 . Warm saline bottom water in the ancient ocean . Nature 296 , 620 – 623 .  

  3. Bryan , F . 1986 . High-latitude salinity effects and inter-hemispheric thermohaline circulations . Nature 323 , 301 – 323 .  

  4. Bryan , F . 1987 . Parameter sensitivity of primitive equa-tion ocean general circulations models . J. Phys. Oceanogr . 17 , 970 – 985 .  

  5. Bryan , K. and Lewis , L. J . 1979 . A water mass model of the world ocean . J. Geophys. Res . 84 , 2503 – 2517 .  

  6. Emanuel , K. A. , Neelin , J. D. and Bretherton , C. S . 1994 . On large-scale circulations in convecting atmospheres . Q. J. R. Meteorol. Soc . 120 , 1111 – 1143 .  

  7. Gargett , A. E . 1984 . Vertical eddy diffusivity in the ocean interior . J. Mar. Res . 42 , 359 – 393 .  

  8. Huang , R. X . 1999 . Mixing and energetics of the oceanic thermohaline circulation . J. Phys. Oceanogr . 29 , 727 – 746 .  

  9. Kato , H. and Phillips , O. M. 1969 . On the penetration of a turbulent layer into a stratified fluid. J. Fluid Mech . 37 , 643 – 655.  

  10. Klinger , B. A. and Marotzke , J . 1999 . Behavior of double-hemisphere thermohaline flows in a single basin . J. Phys. Oceanogr . 29 , 382 – 399 .  

  11. Lohmann , G. and Lorenz , S . 2000 . On the hydrological cycle under paleoclimatic conditions as derived from AGCM simulations . J. Geophys. Res . D13 , 17417 – 17436 .  

  12. Lyle , M . 1997 . Could early Cenozoic thermohaline circu-lation have warmed the poles . Paleoceanography 12 , 161 – 167 .  

  13. Marotzke , J . 1996 . Analysis of thermohaline feedbacks. In: Decadal climate variability; dynamics and predict-ability (eds D. L. T. Anderson and J. Willebrand ), Vol. I 44 , NATO ASI series , Springer-Verlag , 334 - 378 .  

  14. Marotzke , J . 1997 . Boundary mixing and the dynamics of three-dimensional thermohaline circulations . J. Phys. Oceanogr . 27 , 1713 – 1728 .  

  15. Marotzke , J. and Scott , J. R . 1999 . Convective mixing and the thermohaline circulation . J. Phys. Oceanogr . 29 , 2962 – 2970 .  

  16. Munk , W. H . 1966 . Abyssal recipes . Deep-Sea Res . 13 , 707 – 730 .  

  17. Munk , W. H. and Wunsch , C . 1998 . Abyssal recipes II: energetics of tidal and wind mixing . Deep-Sea Res. I 45 , 1977 – 2010 .  

  18. Nilsson , J. and Emanuel , K. A . 1999 . Equilibrium atmo-spheres of a two-column radiative-convective model . Q. J. R. Meteorol. Soc . 125 , 2239 – 2264 .  

  19. Park , Y.-G . 1999 . The stability of thermohaline circula-tion in a two-box model . J. Phys. Oceanogr . 29 , 3101 – 3110 .  

  20. Park , Y.-G. and Bryan , K . 2000 . Comparison of ther-mally driven circulation from a depth-coordinate model and an isopycnal model. Part I: scaling-law sensitivity to vertical diffusivity . J. Phys. Oceanogr . 30 , 590 – 605 .  

  21. Pedlosky , J . 1996 . Ocean circulation theory . Springer-Verlag , first edition , 453 pp .  

  22. Pierrehumbert , R. T . 1995 . Thermostats, radiator fins, and the local runaway greenhouse . J. Atmos. Sci . 52 , 1784 – 1806 .  

  23. Polzin , K. L. , Toole , J. M. , Ledwell , J. R. and Schmitt , R. W . 1997 . Spatial variability of turbulent mixing in the abyssal ocean . Science 276 , 93 – 96 .  

  24. Rahmstorf , S . 1995 . Bifurcations of the Atlantic thermo-haline circulation in response to changes in the hydrological cycle . Nature 378 , 145 – 149 .  

  25. Rahmstorf , S . 1999 . Shifting seas in the greenhouse . Nature 399 , 523 – 524 .  

  26. Rooth , C . 1982 . Hydrology and ocean circulation . Prog. Oceanogr . 11 , 131 – 149 .  

  27. Sandstrom , J. W . 1908 . Dynamische versuche mit meer-wasser . Annalen der Hydrographie und Maritimen Meteorologie 36 , 6 – 23 .  

  28. Scott , J. R. , Marotzke , J. and Stone , P. H . 1999 . Inter-hemispheric thermohaline circulation in coupled box model . J. Phys. Oceanogr . 29 , 351 – 365 .  

  29. Stigebrandt , A . 1985 . On the hydrographic and ice condi-tions in the northern North Atlantic during different phases of a glaciation cycle . Palaeogeogr., Palaeoclima-tol., Palaeoecol . 50 , 303 – 321 .  

  30. Stommel , H. M . 1961 . Thermohaline convection with two stable regimes of flow. Tellus 13 , 224 - 230.  

  31. Tziperman , E. 2000. Proximity of the present day ther-mohaline circulation to an instability threshold . J. Phys. Oceanogr . 30 , 90 – 104 .  

  32. Walin , G . 1985 . The thermohaline circulation and the control of ice ages . Palaeogeogr., Palaeoclimatol., Palaeoecol . 50 , 323 – 332 .  

  33. Walin , G . 1990 . On the possibility of a reversed thermo-haline circulation. In: Nordic perspectives on oceano-graphy (ed. P. Lundberg ), Kungl. Vetenskapsoch Vitterhets-Samhället i Goteborg. , 145 - 154. ( Available from the author, Earth Science Center, Goteborg Uni-versity, Box 460,40530 Gothenburg, Sweden ).  

  34. Wang , X. , Stone , P. H. and Marotzke , J . 1999 . Global thermohaline circulation. Part I: sensitivity to atmo-spheric moisture transport . J. Climate 12 , 71 – 82 .  

  35. Welander , P . 1986 . Thermohaline effects in the ocean circulation and related simple models. In: Large-scale transport processes in the oceans and atmosphrere (eds J. Willebrand and D. L. T. Anderson ). D. Reidel , 163 - 200 .  

  36. Zhang , J. , Schmitt , R. W. and Huang , R. X . 1999 . The relative influence of diapycnal mixing and hydrological forcing on the stability of thermohaline circulation . J. Phys. Oceanogr . 29 , 1096 – 1108 .  

comments powered by Disqus