Start Submission Become a Reviewer

Reading: On ensemble prediction of ocean waves

Download

A- A+
Alt. Display

Original Research Papers

On ensemble prediction of ocean waves

Author:

Leandro Farina

Centro de Previsão de Tempo e Estudos Climáticos (CPTEC), Instituto Nacional de Pesquisas Espaciais (INPE), Cachoeira Paulista, SP 12630-000, BR
X close

Abstract

The numerical ensemble prediction is a well accepted method for improving the performance of atmospheric models. In the context of ocean wave modeling little has been researched or documented about this technique. An essential study of the method of ensemble prediction applied to deep water waves has been carried out. A framework is defined for obtaining perturbations of the directional wave spectra and for employing an ensemble of wind fields generated by an atmospheric model. The third-generation global wave model WAM is used with real atmospheric conditions to investigate the effect on wave predictions of perturbed initial conditions and atmospheric forcing. Due to spectral shape stabilisation, perturbing wave initial conditions has limited utility in ensemble prediction. However, the members could be used in wave data assimilation schemes in an interactive way. Using ensembles of the atmospheric condition can generate diverging solutions, justifying the ensemble procedure by itself. In the cases studied, it is observed that the ensemble mean outperformed the other members. The solution behaviour suggests using a lower-order approximation of the model to generate ensemble members with less computational cost.

How to Cite: Farina, L., 2002. On ensemble prediction of ocean waves. Tellus A: Dynamic Meteorology and Oceanography, 54(2), pp.148–158. DOI: http://doi.org/10.3402/tellusa.v54i2.12133
  Published on 01 Jan 2002
 Accepted on 28 Aug 2001            Submitted on 28 Mar 2001

References

  1. Coutinho , M. M. 1999 . Previsão por conjuntos utiliz-ando perturbaçoes baseadas em componentes princi-pais . Master’s thesis, INPE , sao José dos Campos , Brazil .  

  2. Hoffschildt , M. , Bidlot , J.-R. , Hansen , B. and Janssen , P. A. E. M. 2000 . Potential benefit of ensemble forecasts for ship routing. ECMWF Technical Memorandum no. 287, Reading, UK.  

  3. Janssen , P. A. E. M. 2000 . Potential benefits of ensemble prediction of waves . ECMWF Newsletter 86 , 3 – 6 .  

  4. Komen , G. J. , Cavaleri , L. , Donelan , M. , Hasselmann , K. , Hasselmann , S. and Janssen , P. A. E. M. 1994 . Dynamics and modelling of ocean waves . Cambridge University Press , Cambridge , 532 pp .  

  5. Lorenz , E. N. A. 1965 . A study of the predictability of a 28-variable atmospheric model . Tellus 17 , 321 – 333 .  

  6. Molteni , F. , Buizza , R. , Palmer , T. N. and Petroliagis , T. 1996 . The ECMWF Ensemble prediction system: methodology and validation , Quart. J. R. Meteorol. Soc . 122 , 73 – 119 .  

  7. Ochi , M. K. 1998 . Ocean waves, the stochastic approach . Cambridge University Press , Cambridge , 319 pp .  

  8. Toth , Z. and Kalnay , E. 1997 . Ensemble forecasting at NCEP and the breeding method. Mon. Wea. Re v . 125 , 3297 – 3319 .  

  9. Young , I. R. and Van Vledder , G. Ph. 1993 . A review of the central role of nonlinear interactions in wind-wave evolution . Philos. Trans. R. Soc. London, Ser. A 342 , 505 – 524 .  

  10. Zhang , Z. 1997 . Hurricane ensemble prediction using E0E-based perturbations . PhD Thesis. Florida State University , Florida .  

  11. Zhang , Z. and Krishnamurti , T. N. A. 1999 . A perturbation method of hurricane ensemble predictions. Mon. Wea. Re v . 127 , 447 – 469 .  

comments powered by Disqus