Start Submission Become a Reviewer

Reading: Role of the metric in forecast error growth: how chaotic is the weather?

Download

A- A+
Alt. Display

Original Research Papers

Role of the metric in forecast error growth: how chaotic is the weather?

Author:

D. Orrell

Centre for Nonlinear Dynamics, University College London, Gower Street, London WC1E 6BT, GB
X close

Abstract

The atmosphere is often cited as an archetypal example of a chaotic system, where prediction is limited by the model’s sensitivity to initial conditions. Experiments have indeed shown that forecast errors, as measured in 500 hPa heights, can double in 1.5 d or less. Recent work, however, has shown that, when errors are measured in total energy, model error is the primary contributor to forecast inaccuracy. In this paper we attempt to reconcile these apparently conflicting sets of results by examining the role of the chosen metric. Using a simple medium dimensional model for illustration, it is found that the metric has a strong effect, not just on apparent error growth, but on the perceived causes of error. If an insufficiently global metricis used, then it may appear that error is due to sensitivity to initial condition, when in fact it is caused by sensitivity to error in the other variables. If the goal is to diagnose the causes oferror, a sufficiently global metric must be used. The simple model is used to predict the internalrate of growth of the ECMWF operational model, and preliminary results compared. It is found that both 500 hPa and total energy results are consistent with high model error and a relatively low internal rate of growth. Experiments are suggested to further verify the results forweather models.

How to Cite: Orrell, D., 2002. Role of the metric in forecast error growth: how chaotic is the weather?. Tellus A: Dynamic Meteorology and Oceanography, 54(4), pp.350–362. DOI: http://doi.org/10.3402/tellusa.v54i4.12159
  Published on 01 Jan 2002
 Accepted on 8 Feb 2002            Submitted on 31 Jan 2002

References

  1. Bjerknes , V. 1911 . Dynamic meteorology and hydro-graphy , Part II. Kinematics. Gibson Bros ., Carnegie Institute , New York .  

  2. Buizza , R. and Palmer , T. 1995 . The singular vector structure of the atmospheric global circulation. J. Atmos. Sc i . 52 , 1434 – 1456 .  

  3. Chatfield , C. 1989 . The analysis of time series . Chapman and Hall , New York .  

  4. Dalcher , A. and Kalnay , E. 1987 . Error growth and predictability in operational ECMWF forecasts . Tellus 39A , 474 – 491 .  

  5. Ehrendorfer , M. 1997 . Predicting the uncertainty of numerical weather forecasts: a review . Meteorol. Z . 6 , 147 – 183 .  

  6. Klinker , E. and Sardeshmukh , P. D. 1992 . The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements. J. Atmos. Sc i . 49 , 608 – 627 .  

  7. Leith , C. 1964 . Numerical simulation of the earth’s atmosphere . Meth. Comput. Phys . 4 , 1 – 28 .  

  8. Leith , C. 1978 . Objective methods of weather prediction . Ann. Rev. Fluid Mech . 10 , 107 – 128 .  

  9. Lorenz , E. N. 1963 . Deterministic nonperiodic flow. J. Atmos. Sc i . 20 , 130 – 141 .  

  10. Lorenz , E. N. 1969 . Atmospheric predictability as revealed by naturally occurring analogues. J. Atmos. Sc i . 26 , 636 – 646 .  

  11. Lorenz , E. N. 1982 . Atmospheric predictability experiments with a large numerical model . Tellus 34 , 505 – 513 .  

  12. Lorenz , E. 1996 . Predictability - a problem partly solved . In Predictability (ed. T. Palmer). European Centre for Medium-Range Weather Forecasting , Shinfield Park, Reading, UK .  

  13. Mintz , Y. 1965 . Very long-term global integration of the primitive equations of atmospheric motion, Proc . WMO IU GG Symposium on Research and Development Aspects of Long-Range Forecasting , 66 , 141 – 167 .  

  14. Mullen , S. and Buizza , R. 2001 . Quantitative precipitation forecasts over the United States by the ECMWF ensemble prediction system . Mon. Wea. Rev . 129 , 638 – 663 .  

  15. Orrell , D. 2001 . Modelling nonlinear dynamical systems: chaos , error, and uncertainty. D.Phil. Thesis, Oxford University.  

  16. Orrell , D. , Smith , L. , Barkmeijer , J. and Palmer , T. M. 2001 . Model error in weather forecasting . Nonlin. Proc. Geogr . 8 , 357 – 371 .  

  17. Palmer , T. N. 1999 . A nonlinear dynamical perspective on climate prediction . J. Climate 12 , 575 – 591 .  

  18. Rabier , P. , Jarvinen , H. , Mahfouf , J. F. and Simmons , A. 2000 . The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics . Q. J .R. Meteorol. Soc . 126 , 1143 – 1170 .  

  19. Savijarvi , H. 1995 . Error growth in a large numerical forecast system . Mon. Wea. Rev . 123 , 212 – 221 .  

  20. Schubert , S. and Schang , Y. 1996 . An objective method for inferring sources of model error . Mon. Wea. Rev . 124 , 325 – 340 .  

  21. Shukla , J. 1998 . Predictability in the midst of chaos: a scientific basis for climate forecasting . Science 282 , 728 – 731 .  

  22. Simmons , A. , Mureau , R. and Petroliagis , T. 1995 . Error growth and estimates of predictability from the ECMWF forecasting system . Q. J. R. Meteorol. Soc . 121 , 1739 – 1771 .  

  23. Smagorinsky , J. 1963 . General circulation experiments with the primitive equations . Mon. Wea. Rev . 91 , 99 – 164 .  

  24. Smith , L. A. , Ziehmann , C. and Fraedrich , K. 1999 . Uncertainty dynamics and predictability in chaotic systems. Q. J. R. Meteorol. Soc . 125 , 2855 – 2886.  

  25. Strang , G. 1986 . Introduction to applied mathematics , Wellesley-Cambridge Press .  

  26. Van den Dool , H. M. 1994 . Searching for analogues, how long must we wait? Tellus 46A , 314 – 324 .  

  27. Toth , Z. and Kalnay , E. 1993 . Ensemble forecasting at NMC: the generation of perturbations . Bull. Am. Meteorol. Soc . 74 , 2317 – 2339 .  

  28. Vannitsem , S. and Toth , Z. 2002 . Personal communicati o n .  

  29. Viterbo , P. , Beljaars , A. , Mahfouf , J. and Teixeira , J. 1999 . The representation of soil moisture freezing and its impact on the stable boundary layer . Q. J. R. Meteorol. Soc . 125 , 2401 – 2426 .  

comments powered by Disqus