Start Submission Become a Reviewer

Reading: Justifying the WKB approximation in pure katabatic flows

Download

A- A+
Alt. Display

Original Research Papers

Justifying the WKB approximation in pure katabatic flows

Authors:

Branko Grisogono ,

Arrhenius Laboratory, S-10691 Stockholm, SE
X close

Johannes Oerlemans

IMAU, Utrecht University, Utrecht, NL
X close

Abstract

Pure katabatic flow is studied with a Prandtl-type model allowing eddy diffusivity/conductivity to varywith height. Recently we obtained an asymptotic solution to the katabatic flow assuming the validity ofthe WKB method, which solves the fourth-order governing equation coupling the momentum and heat transfer. The WKB approximation requires that eddy diffusivity may vary only gradually compared to the calculated quantities, i.e., potential temperature and wind speed. This means that the scale heightfor eddy diffusivity must be higher than that for the calculated potential temperature and wind speed. The ratio between the maximum versus the mean eddy diffusivity should be less than that for the scale heights of the diffusivity versus the calculated quantities (temperature and wind). Here we justify(a posteriori) the WKB method independently based on two arguments: (i) a scaling argument and (ii )a philosophy behind a higher-order closure turbulence modeling. Both the eddy diffusivity maximum and the level of the relevant maximum turbulent kinetic energy are above the strongest part of the near surface inversion and the low-level jet which is required for the WKB validity. Thus, the numerical modeling perspective lends credibility to the simple WKB modeling. This justification is important before other data sets are analyzed and a parameterization scheme written.

How to Cite: Grisogono, B. and Oerlemans, J., 2002. Justifying the WKB approximation in pure katabatic flows. Tellus A: Dynamic Meteorology and Oceanography, 54(5), pp.453–462. DOI: http://doi.org/10.3402/tellusa.v54i5.12166
  Published on 01 Jan 2002
 Accepted on 23 May 2002            Submitted on 22 Nov 2001

References

  1. Arritt , R. W. and Pielke , R. A. 1986 . Interactions of noc-turnal slope flows with ambient winds . Boundary-Layer Meteorol . 37 , 183 – 195 .  

  2. Bender , C. M. and Orszag , S. A. 1978 . Advanced mathematical methods for scientists and engineers . McGraw-Hill , New York , 593 pp .  

  3. Berger , B. W. and Grisogono , B. 1998 . The baroclinic, variable eddy viscosity Ekman layer. An approximate analytical solution . Boundary-Layer Meteorol . 87 , 363 – 380 .  

  4. Defant , E 1949 . Zur theorie der Hangwinde, nebst bemerkungen zur Theorie der Bergund Talwinde . Arch. Meteor. Geophys. Biokl. Ser. Al , 421 – 450 .  

  5. Denby , B. 1999 . Second-order modelling of turbulence in katabatic flows . Boundary-Layer Meteorol . 92 , 67 – 100 .  

  6. Denby , B. and Smeets , C. J. P. P. 2000 . Derivation of turbulent flux profiles and roughness lengths from katabatic flow dynamics . J. Appl. Meteorol . 39 , 1601 – 1612 .  

  7. Egger , J. 1990 . Thermally forced flows: theory. In, Atmospheric processes over complex terrain. (ed. W. Blumen. Am. Meteorol. Soc., Washington, DC, 43 - 57 .  

  8. Enger , L. 1990 . Simulation of dispersion in moderately complex terrain Part A. The fluid dynamics model . Atmos. Environ . 24A , 2431 – 2446 .  

  9. Gill , A. E. 1982 . Atmosphere-ocean dynamics ,. Academic Press , New York , 662 pp .  

  10. Grisogono , B. 1994 . Dissipation of wave drag in the atmospheric boundary layer. J. Atmos. Sc i . 51 , 1237 – 1243 .  

  11. Grisogono , B. 1995a . A generalized Ekman layer profile within gradually-varying eddy diffusivities . Quart. J. R. Meteorol. Soc . 121 , 445 – 453 .  

  12. Grisogono , B. 1995b . Wave-drag effects in a mesoscale model with a higher-order closure turbulence scheme . J. Appl. Meteorol . 34 , 941 – 954 .  

  13. Grisogono , B. and Oerlemans , J. 2001a . Katabatic flow: analytic solution for gradually varying eddy diffusivities. J. Atmos. Sc i . 58 , 3349 – 3354 .  

  14. Grisogono , B. and Oerlemans , J. 200lb. A theory for the estimation of surface fluxes in simple katabatic flows. Quart. J. R. Meteorol. Soc . 127 , 2725-273 9 .  

  15. Holton , J. R. 1992 . An introduction to dynamic meteorology ,. Academic Press , New York , 3rd edn , 511 pp.  

  16. Hunt , J.C.R. , Stretch D. D. and Britter , R. E. 1988 . Length scales in stably stratified turbulent flows and their use in turbulence models . In: Stably stratified flow and dense gas dispersion. (ed. J. S. Puttock). Clarendon Press , Oxford , 285 – 321 .  

  17. Laprise , J. P. R. 1993 . An assessment of the WKBJ approximation to the vertical structure of linear mountain waves: implications for gravity-wave drag parameterization. J. Atmos. Sc i . 50 , 1469 – 1487 .  

  18. Mahrt , L. 1982 . Momentum balance of gravity flows. J. Atmos. Sc i . 39 , 2701 – 2711 .  

  19. Mahrt , L. 1998 . Stratified atmospheric boundary layers and breakdown of models . Theoret. Comput. Fluid Dyn . 11 , 263 – 279 .  

  20. Munro , D. S. and Davies , J. A. 1978 . On fitting the log-linear model to wind speed and temperature profiles over a melting glacier . Boundary-Layer Meteorol . 15 , 423 – 437 .  

  21. Nappo , C. J. and Rao , K. S. 1987 . A model study of pure katabatic flow . Tellus 39A , 61 – 71 .  

  22. O’Brien , J. J. 1970 . A note on the vertical structure of the eddy exchange coefficient in the planetary boundary layer. J. Atmos. Sc i . 27 , 1213 – 1215 .  

  23. Oerlemans , J. 1998 . The atmospheric boundary layer over metling glaciers. In: Clear and cloudy boundary layers . Royal Netherlands Academy of Arts and Sciences , Amsterdam , 129 – 153 .  

  24. Oerlemans , J. and Fortuin , J. P. E 1992 . Sensitivity of glaciers and small ice caps to greenhouse warming . Science , 258 , 115 – 117 .  

  25. Oerlemans , J. , Bjönisson , H. , Kuhn , M. , Obleitner , E , Palsson , E , Smeets , P. , Vugts , H. E and de Wolde , J. 1999 . A glacio-meteorological experiment on Vatnajokull, Iceland, Summer 1996. Boundary-Layer Meteorol . 92 , 92 – 26 .  

  26. Pahlow , M. , Partange , M. B., and Porte-Agel , E 2001. On Monin-Obukhov similarity in the stable atmospheric boundary layer. Boundary-Layer Meteorol . 99 , 99 – 248 .  

  27. Pawlak , G. and Armi , L. 2000 . Mixing and entrainment in developing stratified currents . J. Fluid Mech . 424 , 45 – 73 .  

  28. Pielke , R. A . 1984 . Mesoscale numerical modeling . Academic Press , New York , 612 pp.  

  29. Prandtl , L. 1942 . Fiihrer durch die Strömungslehre . Vieweg und Sohn , Braunschwieg , 373 – 375 .  

  30. Schumann , U. and Gerz , T. 1995 . Turbulent mixing in stably stratified shear flows . J. Appl. Meteorol . 34 , 33 – 48 .  

  31. Smeets , C. J. P. P., Duynkerke P. G. and Vugts , H. E 2000 . Tur-bulence characteristics of the stable boundary layer over a mid-latitude glacier. Part Pure katabatic forcing conditions. Boundary-Layer Meteorol . 97 , 97 – 107 .  

  32. Stull , R. B . 1988 . An Introduction to Boundary Layer Meteorology . Kluwer Academic Publishers , Dayrdrecht , 666 pp.  

  33. Tjemstrom , M. 1993 . Turbulence length scales in stably stratified free shear flow analyzed from slant aircraft profiles . J. Appl. Meteorol . 32 , 948 – 963 .  

  34. Van den Broeke , M. R. 1997 . Momentum, heat and moisture budgets of the katabatic wind layer over a mid-latitude glacier in summer. J. Appl. Meteorol . 36 , 36 – 774 .  

  35. Van der Avoird , E. and Duynkerke , P. G. 1999 . Turbulence in a katabatic flow . Does it resemble turbulence in stable boundary layers over flat surfaces? Boundary-Layer Meteorol . 92 , 39 – 66 .  

  36. Zilitinkevich , S. and Calanca , P. 2000. An extended theory for the stably stratified atmospheric boundary layer . Quart. J. R. Meteorol. Soc . 126 , 1913– 1923 .  

  37. Zilitinkevich , S. and Mironov , D. V. 1996 . A multi-limit formulation for the equilibrium depth of a stably stratified boundary layer . Boundary-Layer Meteorol . 81 , 325 – 351 .  

comments powered by Disqus