Start Submission Become a Reviewer

Reading: Simulating the Greenland atmospheric boundary layer - Part I: Model description and validation

Download

A- A+
Alt. Display

Original Research Papers

Simulating the Greenland atmospheric boundary layer - Part I: Model description and validation

Authors:

Bruce Denby ,

Institute for Marine and Atmospheric Research, Utrecht University, Princetonplein 5, 3584 CC Utrecht, NL
About Bruce
Present address: Scott Polar Research Institute, University of Cambridge Lensfield Road, Cambridge CB2 1ER, UK
X close

Wouter Greuell,

Institute for Marine and Atmospheric Research, Utrecht University, Princetonplein 5, 3584 CC Utrecht, NL
X close

Johannes Oerlemans

Institute for Marine and Atmospheric Research, Utrecht University, Princetonplein 5, 3584 CC Utrecht, NL
X close

Abstract

A three-dimensional dynamic downscaling model of the Greenland atmospheric boundary layer, with a horizontal resolution of 20 km, is descibed and applied to the Greenland ice sheet for the 1998 ablation season. The model uses ECMWF analysis data fields of synoptic pressure, free atmospheric temperature, cloud cover, humidity and sea surface temperature to force the model. The model calculates the perturbation component of the temperature and pressure field to describe the atmospheric boundary layer dynamics. The aim of this study, the first of two papers, is to investigate the role of the turbulent heat fluxes in the surface energy balance of the ice sheet and their response to changes in atmospheric temperature. In this first paper, results from the simulation are compared with observations from six automatic weather stations situated on the ice sheet, three in the ablation zone and three in the accumulation zone. The comparison shows that the boundary layer model can reproduce the near surface meteorological variables of wind, temperature and specific humidity quite well and improve significantly on 2 m values taken directly from the ECMWF analysis. The increased spatial resolution of the model is essential in order to model accurately katabatically forced winds near the margin of the ice sheet. The calculated and observed melts at two sites in the ablation zone are also compared. At one site close to the margin, which is situated in a well drained ice region, the comparison with observations is very good, within 1%. At a higher site, where subsurface processes not included in the model are important for the total ablation, the calculated melt is 35% larger than the observed ablation.

How to Cite: Denby, B., Greuell, W. and Oerlemans, J., 2002. Simulating the Greenland atmospheric boundary layer - Part I: Model description and validation. Tellus A: Dynamic Meteorology and Oceanography, 54(5), pp.512–528. DOI: http://doi.org/10.3402/tellusa.v54i5.12170
  Published on 01 Jan 2002
 Accepted on 22 Apr 2002            Submitted on 7 Dec 2001

References

  1. Albrecht , B. A. , Fairall , C. W. , Thomson , D. W. and White , A. B. 1990 . Surface-based remote sensing of the observed and the adiabatic liquid water content of stratocumulus clouds . Geophys. Res. Lett . 17 , 89 – 92 .  

  2. Anderson , D. A. , Tannehill , J. C. and Pletcher , R. H. 1984 . Computational fluid mechanics and heat transfer . Hemisphere Publishing , 252 .  

  3. Andreas , E. L. 1987 . A theory for the scalar roughness and the scalar transfer coefficients over snow and sea ice . Boundary-Layer Meteorol . 38 , 159 – 184 .  

  4. Box , J. E . 2001 . Surface water vapour exchanges on the Greenland ice sheet derived from automatic weather station data . Ph.D. thesis , University of Colorado , USA .  

  5. Denby , B. 1999 . Second-order modelling of turbulence in katabatic flows . Boundary-Layer Meteorol . 92 , 67 – 100 .  

  6. Denby , B. , Greuell , W. and Oerlemans , J. 2002 . Simulat-ing the Greenland atmospheric boundary layer. Part II: Energy balance and climate sensitivity. Tellus 54-A, this issue .  

  7. Ekholm , S. 1996 . A full coverage, high-resolution, topo-graphic model of Greenland computed from a variety of digital elevation data . J. Geophys. Res . 21 , 21961 – 21972 .  

  8. Gal-Chen , T. and Somerville , R. C. J. 1975 . On the use of coordinate transformation for the solution of the Navier-Stokes equations. J. Comput. Phys . 17 , 17 – 228 .  

  9. Garratt , J. R . 1977 . Review of drag coefficients over oceans and continents. Mon. Wea. Rev . 105 , 105 – 929 .  

  10. Garratt , J. R . 1992 . The atmospheric boundary layer . Cambridge University Press , Cambridge, UK .  

  11. Garratt , J. R . and Brost , R. A. 1982 . Radiative cooling effects within and above the nocturnal boundary layer./. Atmos. Sci . 38 , 38 – 2746 .  

  12. Greuell , W. and Konzehnann , T. 1994 . Numerical modelling of the energy balance and the englacial temperature of the Greenland ice sheet. Calculations for the ETH camp location (West Greenland, 1155 m a.s.1 .). Global Planet. Change 9 , 79 – 90 .  

  13. Hanjalié , K. and Launder , B. E. 1972 . A Reynolds stress model of turbulence and its application to thin shear flows . J. Fluid. Mech . 52 , 609 – 638 .  

  14. Iqbal , M. 1983 . An introduction to solar radiation . Academic Press , Toronto , Canada .  

  15. Konzehnann , T. , van de Wal , R. S. W. , Greuell , W. , Bintanja , R. , Henneken , E. A. C. and Abe-Ouchi , A. 1994 . Param-eterization of global and longwave incoming radiation for the Greenland ice sheet. Global Planet. Change 9 , 143 – 164.  

  16. Mellor , G. L. and Yamada , T. 1974 . A hierarchy of turbulence closure models for planetary boundary layers . J. Atmos. Sci . 31 , 1791 – 1806 .  

  17. Oerlemans , J . and Knap , W. H. 1998 . A 1 year record of global radiation and albedo in the ablation zone of the Morteratschgletscher, Switzerland. J. Geophys. Res . 44 , 44 – 238 .  

  18. Ohmura , A. 1987 . New temperature distribution maps for Greenland . Z. Gletscherkd. Glazialgeol . 23 , 1 – 45 .  

  19. Ohmura , A. and Reeh , N. 1991 . New precipitation and accumulation maps for Greenland . J. Glaciol . 37 , 140 – 148 .  

  20. Pielke , R. A. 1984 . Mesoscale meteorological modelling . Academic Press, Orlando, FL , USA .  

  21. Ranzi , R. and Rossi , R. 1991 . Physically based approach to modelling distributed snow melt. In : IAHS Publication 205 , 141 – 152 .  

  22. Reeh , N. 1991 . Parameterization of melt rate and surface temperature on the Greenland ice sheet . Polarforschung , 59 , 113 – 128 .  

  23. Reeh , N. , Mayer , C. , Miller , H. , Thomsen , H. H. and Weidick , A. 1999 . Present and past climate control on fjord glaciations in Greenland: Implications for IRD-deposition in the sea. Geophys. Res. Lett . 26 , 26 – 1042 .  

  24. Rodgers , C. D. 1967 . The use of emissivity in atmospheric radiation calculations . Quart. J. R. Meteorol. Soc . 73 , 67 – 92 .  

  25. Shir , C. C. 1973 . A preliminary numerical study of atmospheric turbulent flows in the idealized planetary boundary layer . J. Atmos. Sci . 30 , 1327 – 1339 .  

  26. Smeets , C. J. P. P. 2000. Stable boundary layer over a melting glacier: turbulence characteristics and surface energy balance. Ph.D. thesis, Free University of Amsterdam, The Netherlands.  

  27. Steffen , K. , Box , J. E. and Abdalati , W. 1996 . Greenland climate network: GC-Net. In: CRREL 96-27 Special report on glaciers, ice sheets and volcanoes, trib. to M. Meier (ed. S. C. Colbeck ) 101 - 123 .  

  28. van de Wal , R. S. W. 1994 . An energy balance model for the Greenland ice sheet . Global Planet. Change 9 , 115 – 131 .  

  29. Welch , R. and Zdunkowski , W. 1976 . A radiation model of the polluted atmospheric boundary layer . J. Atmos. Sci . 33 , 2170 – 2184 .  

  30. Zuo , Z. and Oerlemans , J. 1996 . Modelling albedo and specific balance of the Greenland ice sheet: calculations for the Sondre Stromfjord transect. J. Glaciol . 42 , 42 – 317 .  

comments powered by Disqus