Start Submission Become a Reviewer

Reading: Some theoretical considerations on predictability of linear stochastic dynamics

Download

A- A+
Alt. Display

Original Research Papers

Some theoretical considerations on predictability of linear stochastic dynamics

Authors:

Michael K. Tippett ,

International Research Institute for Climate Prediction, Palisades, New York, US
X close

Ping Chang

Department of Oceanography, Texas A& M University, Texas, US
X close

Abstract

Predictability is a measure of prediction error relative to observed variability and so depends on both the physical and prediction systems. Here predictability is investigated for climate phenomena described by linear stochastic dynamics and prediction systems with perfect initial conditions and perfect linear prediction dynamics. Predictability is quantified using the predictive information matrix constructed from the prediction error and climatological covariances. Predictability measures defined using the eigenvalues of thepredictive information matrixare invariant under linear state-variable transformations and for univariate systems reduce to functions of the ratio of prediction error and climatological variances. The predictability of linear stochastic dynamics is shown to be minimized for stochastic forcing that is uncorrelated in normal-mode space. This minimum predictability depends only on the eigenvalues of the dynamics, and is a lower bound for the predictability of the system with arbitrary stochastic forcing. Issues related to upper bounds for predictability are explored in a simple theoretical example.

How to Cite: Tippett, M.K. and Chang, P., 2003. Some theoretical considerations on predictability of linear stochastic dynamics. Tellus A: Dynamic Meteorology and Oceanography, 55(2), pp.148–157. DOI: http://doi.org/10.3402/tellusa.v55i2.12086
  Published on 01 Jan 2003
 Accepted on 20 Aug 2002            Submitted on 5 Feb 2002

References

  1. DelSole , T. and Farrell B. F. 1995 . A stochastically excited linear system as a model for quasigeostrophic turbulence: analytic results for one- and two-layer fluids. J. Atmos. Sc i . 52 , 2531 – 2547 .  

  2. Farrell , B. F. and Ioannou P. J. 1996 . Generalized stability theory. Part I: Autonomous operators. J. Atmos. Sc i . 53 , 2025 – 2040 .  

  3. Hasselmann , K. 1976 . Stochastic climate models I . Theory. Tellus 28 , 473 – 485 .  

  4. Hasselmann , K. 1988 . PIPs and POPs — A general formalism for the reduction of dynamical systems is terms of principal interaction patterns and principal oscillation patterns . J. Geophys. Res . 93 , 11 015-11 021 .  

  5. Ioannou , P.J. 1995. Non-normality increases variance. J. At-mos. Sci. 52 , 1155-115 8 .  

  6. Kleeman , R. 2002 . Measuring dynamical prediction utility using relative entropy. J. Atmos. Sc i . 59 , 2057 – 2072 .  

  7. Kleeman , R. and Moore , A. M. 1997 . A Theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sc i . 54 , 753 – 767 .  

  8. Lorenz , E. N. 1969 . The predictability of a flow which possesses many scales of motion . Tellus 21 , 289 – 307 .  

  9. Marshall , A. W. and Olkin , I. Inequalities: Theory of majorization and its applications, volume 143 of Mathematics in sciences and engineering. Academic Press , New York , 1979 .  

  10. Penland , C. 1989 . Random forcing and forecasting using principal oscillation pattern analysis. Mon. Wea. Re v . 117 , 2165 – 2185 .  

  11. Penland , C. and Matrosova , L. 1994 . A balance condition for stochastic numerical models with application to the El Niiio-Southern oscillation . J. Climate 7 , 1352 – 1372 .  

  12. Penland , C. and Matrosova , L. 1998 . Prediction of tropical Atlantic sea surface temperatures using linear inverse mod-eling . J. Climate 11 , 483 – 496 .  

  13. Penland , C. and Matrosova , L. 2001. Expected and actual errors of linear inverse model forecasts . Mon. Wea. Rev . 129 , 1740– 1745 .  

  14. Penland , C. and Sardeshmulch , P. D. 1995 . The optimal-growth of tropical sea-surface tem-perature anomalies . J. Climate 8 , 1999– 2024 .  

  15. Schneider , T. and Griffies , S. 1999 . A conceptual frame-work for predictability studies . J. Climate 12 , 3133 – 3155 .  

  16. Schneider , T. and Held , I. M. 2001 . Discriminants of twentieth-century changes in earth surface temperatures. J. Climate 14 , 249 – 254.  

  17. Tippett , M. K. and Cohn , S. E. 2001 . Adjoints and low-rank covariance representation . Nonlinear Processes in Geo-phys . 8 , 331 – 340 .  

  18. Weyl , H. 1949 . Inequalities between two kinds of eigenvalues of a linear transformation . Proc. Natl. Acad. Sci USA 35 , 408 – 411 .  

  19. Whitaker , J. S . and Sardeshmulch , P. D. 1998 . A linear theory of extratropical synoptic eddy statistics. J. Atmos. Sci . 55 , 55 – 258 .  

  20. Winkler , C. R. , Newman , M. and Sardeshmulch , P. D. 2001 . A linear model of wintertime low-frequency variability. Part I: Formulation and forecast skill. J. Climate 14 , 4474 – 4494 .  

comments powered by Disqus