Start Submission Become a Reviewer

Reading: Influence of a step-like coastline on the basin scale vorticity budget of mid-latitude gyre ...

Download

A- A+
Alt. Display

Original Research Papers

Influence of a step-like coastline on the basin scale vorticity budget of mid-latitude gyre models

Authors:

Frédéric Dupont ,

Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke O, Montréal, QC H3A 2K6; Centre for Climate and Global Change Research (C2GCR) 805 Sherbrooke O, Montréal, QC, H3A 2K6; Centre de recherche en calcul appliqué (CERCA) 5160 Décarie, Suite 400, Montréal, QC, H3X 2H9, CA
X close

David N. Straub,

Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke O, Montréal, QC H3A 2K6; Centre for Climate and Global Change Research (C2GCR) 805 Sherbrooke O, Montréal, QC, H3A 2K6, CA
X close

Charles A. Lin

Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke O, Montréal, QC H3A 2K6; Centre for Climate and Global Change Research (C2GCR) 805 Sherbrooke O, Montréal, QC, H3A 2K6; Centre de recherche en calcul appliqué (CERCA) 5160 Décarie, Suite 400, Montréal, QC, H3X 2H9, CA
X close

Abstract

Global vorticity budgets in C-grid shallow water (SW) and quasi-geostrophic (QG) models of winddriven ocean circulation with free-slip boundary conditions are considered. For both models, it is pointed out that the discretized vorticity equation is defined only over a subdomain that excludes boundary grid nodes. At finite resolution, this implies an advective flux of vorticity across the perimeter of the discretized vorticity domain. For rectangular basins where grid axes are aligned with the basin walls, this flux tends to zero as resolution is increased. We also consider the case in which the grid is rotated with respect to the basin, so that a step-like coastline results. Increased resolution then leads to more steps and, because the advective flux of vorticity out of the domain is particularly large at steps, it is no longer obvious that increased resolution should reduce the advective flux. Results are found to be sensitive to numerical details. In particular, we consider different formulations for the non-linear terms (for both the SW and QG models) and two formulations of the viscous stress tensor for the SW model [the conventional five-point Laplacian and the δ—ζ stress tensor suggested by Madec et al. (J. Phys. Oceanogr. 21, 1349—1371)]. For the SW model, the overall circulation and the behavior of the flux term are dependent on both the formulation of the viscous stress tensor and the non-linear terms. The best combination is found to be the δ—ζ tensor with an enstrophy-preserving advection scheme. With this combination, the circulation of the non-rotated basin is recovered in rotated basins and the advective flux tends to converge towards zero with increasing resolution. The poorest combination is the δ—ζ tensor with the conventional advective scheme. In this case, the advective flux term diverges with increasing resolution for some rotation angles and the model crashes for some others. For the QG model, the convergence order of the advective flux term of absolute vorticity is near unity (roughly the same as with the SW model). Most of the error (especially at high resolution) is related to errors in the β term (which is hidden in the advective contribution in the SW model). However, the overall circulation is less sensitive to the rotation of the grid with respect to the basin, especially when the Jacobian proposed by Arakawa (J. Comput. Phys. 1, 119—143) is used.

How to Cite: Dupont, F., Straub, D.N. and Lin, C.A., 2003. Influence of a step-like coastline on the basin scale vorticity budget of mid-latitude gyre models. Tellus A: Dynamic Meteorology and Oceanography, 55(3), pp.255–272. DOI: http://doi.org/10.3402/tellusa.v55i3.12094
  Published on 01 Jan 2003
 Accepted on 8 Nov 2002            Submitted on 12 Feb 2002

References

  1. Adcroft , A. and Marshall , D. 1998 . How slippery are piece-wise constant coastlines in numerical ocean models . Tellus 50-A , 95 – 108 .  

  2. Aralcawa , A. 1966 . Computational design for long-term nu-merical integration of the equations of fluid motion: Two-dimensional incompressible flow. part 1 . J. Comput. Phys . 1 , 119 – 143 .  

  3. Aralcawa , A. and Lamb , V. R. 1977 . Computational design of the basic dynamical processes of the UCLA general circulation model . Meth. Comput. Phys . 17 , 174 – 267 .  

  4. Beckmann , A. C. and Döscher , R. 1997 . A method for improved representation of dense water spreading over topography in geopotential-coordinate models . J. Phys. Oceanogr . 27 , 581 – 591 .  

  5. Bleck , R. and Boudra , D. B. 1981 . Initial testing of a numerical ocean circulation model using a hybrid quasi-isopycnal vertical coordinate . J. Phys. Oceanogr . 11 , 755 – 770 .  

  6. Blumberg , A. and Mellor , G. 1983 . Diagnostic and prognostic numerical circulation studies of the south atlantic bight . J. Geophys. Res . 88 , 4579 – 4592 .  

  7. Bryan , K. 1969 . A numerical method for the study of the circulation of the world ocean . J. Comput. Phys . 4 , 347 – 376 .  

  8. Cox , M. D. 1979 . A numerical study of somali currents ed-dies . J. Phys. Oceanogr . 29 , 311 – 326 .  

  9. Cox , M. D. 1984 . A primitive equation three-dimensional model of the ocean . Tech. Rep., GFDL Ocean Group, NOAA, Princeton Univ., Princeton , NJ .  

  10. Dietrich , D. E. Ko , D.-S. and Yeske , L. 1993 . On the application and evaluation of the relocatable DieCAST ocean circulation model in coastal and semi-enclosed seas. Tech. Rep. 93-1 , Center for Air Sea Technology, Mississippi State University, Building 1103, Stennis Space Center , MS 39529 .  

  11. Dupont , F. 2001 . Comparison of numerical methods for modelling ocean circulation in basins with irregular coasts . PhD thesis, McGill University , Montreal , Canada .  

  12. Forrer , H. and Jeltsch , R. 1998 . A higher-order boundary treatment for Cartesian-grid methods . J. Comput. Phys . 140 , 259 – 277 .  

  13. Gent , P. R. 1993 . The energetically consistent shallow water equations . J. Atmos. Sci . 50 , 1323 – 1325 .  

  14. Gent , P. R. and McWilliams , J. C. 1990 . Isopycnal mixing in ocean circulation models . J. Phys. Oceanogr . 20 , 150 – 155 .  

  15. Gerdes , R. 1993 . A primitive equation ocean general circulation model using a general vertical coordinate transfor-mation . J. Geophys. Res . 98 , 14683 – 14701 .  

  16. Gill , A. E. 1982 . Atmosphere—ocean dynamics, vol . 30 of International Geophysics Series. Academic Press , New York , 622 pp .  

  17. Hirst , A. and McDougall , T. J. 1996 . Deep-water properties and surface buoyancy flux as simulated by a z-corrdinate model including eddy-induced advection . J. Phys. Oceanogr . 26 , 1320 – 1343 .  

  18. Ierley , G. R. and Sheremet , V. A. 1995 . Multiple solutions and advection-dominated flows in the wind-driven circulation. Part I: Slip . J. Marine Res . 53 , 703 – 738 .  

  19. Killworth , P. D. and Edwards , N. R. 1999 . A turbulent bottom boundary layer code for use in numerical ocean models . J. Phys. Oceanogr . 29 , 1221 – 1238 .  

  20. Lohmann , G. 1998 . The influence of a near-bottom transport parameterization on the sensitivity of the thermohaline cir-culation . J. Phys. Oceanogr . 28 , 2095 – 2103 .  

  21. Madec , G. Chortler , M. , Delecluse , P. and Crepon , M. 1991 . A three-dimensional study of deep-water formation in the northwestern mediterranean sea. J. Phys. Oceanogr . 21 , 21 – 1371 .  

  22. Matthews , K. , Noye , J. and Bills , P. 1996 . A new method for numerical representation of the land-water boundary in lake circulation models . AppL Math. Modelling 20 , 562 – 571.  

  23. Pedersen , G. 1986 . On the effect of irregular boundaries in finite difference models . Int. J. Num. Methods in Fluids 6 , 497 – 505 .  

  24. Pedlosky , J . 1996 . Ocean circulation theory . Springer-Verlag , Heidelberg , 453 pp.  

  25. Pedlosky , J . 1987 . Geophysical fluid dynamics . 2nd edn ., Springer-Verlag , New York , 710 pp.  

  26. Pember , R. , Bell , J. , Colella , P. , Crutchfield , W. and Welcome , M. 1995 . An adaptive cartesian grid method for unsteady compressible flow in irregular regions . J. Comput. Phys . 120 , 120 – 304 .  

  27. Phillips , A. N. 1957 . A coordinate system having some special advantages for numerical forecasting . J. Meteorol . 14 , 184 – 185 .  

  28. Roberts , M. J. , Marsh , R. , New , A. L. and Wood , R. A. 1996 . An intercomparison of a Bryan-Cox-type ocean model and an isopycnic ocean model. Part I: The subpolar gyre and high latitude processes . J. Phys. Oceanogr . 26 , 26 – 1527 .  

  29. Roberts , M. J. and Wood , R. A. 1997 . Topographic sensitivity studies with a Bryan—Cox type ocean model . J. Phys. Oceanogr . 27 , 27 – 836 .  

  30. Sadourny , R. 1975 . The dynamics of finite difference models of the shallow water equations . J. Atmos. Sci . 32 , 680 – 689 .  

  31. Schwab , D. J . and Beletsky , D. 1998 . Propagation of Kelvin waves along irregular coastlines in finite-difference models . Adv. Water Resources 22 , 239 – 235 .  

  32. Shchepeticin , A. E and O’Brien , J. 1996. A physically consistent formulation of lateral friction in shallow-water equa-tion ocean models. Mon. Weather Rev . 124 , 1285-130 0 .  

  33. Wells , N. C. and de Cuevas , B. A. 1995 . Depth-integrated voracity budget of the southern ocean from a general circulation model . J. Phys. Oceanogr . 25 , 2569 – 2582 .  

  34. Winton , M. , Hallberg , R. and Gnanadesilcan , A. 1998 . Sim-ulation of density-driven frictional downslope flow in z-coordinate ocean models . J. Phys. Oceanogr . 27 , 2163 – 2174 .  

comments powered by Disqus