Start Submission Become a Reviewer

Reading: Nonhydrostatic generalization of a pressure-coordinate-based hydrostatic model with implemen...

Download

A- A+
Alt. Display

Original Research Papers

Nonhydrostatic generalization of a pressure-coordinate-based hydrostatic model with implementation in HIRLAM: validation of adiabatic core

Authors:

Aarne Männik ,

Institute of Environmental Physics, Tartu University, Ülikooli 18, 50090 Tartu, EE
X close

Rein Rõõm,

Institute of Environmental Physics, Tartu University, Ülikooli 18, 50090 Tartu, EE
X close

Andres Luhamaa

Institute of Environmental Physics, Tartu University, Ülikooli 18, 50090 Tartu, EE
X close

Abstract

A nonhydrostatic pressure-coordinate model of atmospheric dynamics is developed. The model filters acoustic mode. Internal acoustic waves are filtered using the assumption of non-divergence of motion in pressure-space. External (Lamb mode) waves are filtered using the surface pressure adjustment. The model is implemented in the framework of the numerical weather prediction model HIRLAM (High Resolution Limited Area Model) as an extension to the hydrostatic kernel. The integration scheme is either the explicit or semi-implicit Eulerian leapfrog time stepping. Due to the acoustic filtration, the explicit scheme supports quite large time-steps. To check the validity of the model, several flow experiments with artificial orography are performed. The hydrostatic and nonhydrostatic flow regimes are investigated. The results of different models are compared mutually and with the analytic solutions. The real situation simulations are also presented to show the model’s forecasting capabilities.

How to Cite: Männik, A., Rõõm, R. and Luhamaa, A., 2003. Nonhydrostatic generalization of a pressure-coordinate-based hydrostatic model with implementation in HIRLAM: validation of adiabatic core. Tellus A: Dynamic Meteorology and Oceanography, 55(3), pp.219–231. DOI: http://doi.org/10.3402/tellusa.v55i3.12096
  Published on 01 Jan 2003
 Accepted on 14 Jan 2003            Submitted on 26 Feb 2002

References

  1. Arakawa , A. and Lamb , V. R. 1977 . Computational design of the basic dynamical process of the UCLA general circulation model . Meth. Comput. Phys . 17 , 173 – 265 .  

  2. Baines , P. G. 1995 . Topographic effects in startified flows . Cambridge University Press , New York .  

  3. Bubnova , R. , Hello , G. , Benard , P. and Geleyn , J. F. 1995 . Integration of fully elastic equations cast in the hydrostatic pressure terrain-following coordinate in the framework of the ARPEGE/Aladin NWP system. Mon. Wea. Re v . 123 , 515 – 535 .  

  4. Carpenter , K. M. 1979 . An experimental forecast using a nonhydrostatic mesoscale model . Q. J. R. Meteorol. Soc . 105 , 629 – 655 .  

  5. Davies , H. C. 1976 . A lateral boundary formulation for multi-level prediction models . Q. J. R. Meteorol. Soc . 102 , 405 – 418 .  

  6. Dudhia , J. 1993 . A nonhydroatatic version of the Penn State-NCAR mesoscale model: validation tests and simulation of an Atlantic cyclone and cold front. Mon. Wea. Re v . 121 , 1493 – 1513 .  

  7. Eliassen , A. 1949 . The quasi-static equations of motion with pressure as indipendent variable . Geofys. Publ. (Oslo) 17 , 1 – 44 .  

  8. Laprise , R. 1992 . The Euler equations of motion with hydro-static pressure as an indipendent variable. Mon. Wea. Re v . 120 , 197 – 207 .  

  9. Laprise , R. and Peltier , W. R. 1989 . On the structural characteristics of steady finite-amplitude mountain waves over bell-shaped topography. J. Atmos. Sc i . 46 , 586 – 595 .  

  10. Männilc , A. and Room , R. 2001 . Non-hydrostatic adiabatic kernel for HIRLAM. Part II. Anelastic, hybrid-coordinate, explicit-Eulerian model . HIRLAM Technical Report 49 , 54 pp . Available from the HIRLAM member institutes or http://www.knmi.n1/hirlamicechReportsila49ab.html .  

  11. Miller , M. 1974 . On the use of pressure as vertical coordinate in modeling convection . Q. J. R. Meteorol. Soc . 100 , 155 – 162 .  

  12. Miller , M. and Pearce , R. P. 1974 . A three-dimensional prim-itive equation model of cumulonimbus convection . Q. J. R. Meteorol. Soc . 100 , 133 – 154 .  

  13. Robert , A. 1982 . A semi-Lagrangian and semi-implicit numerical scheme for the primitive meteorological equations . J. Meteorol. Soc. Jpn . 60 , 319 – 325 .  

  14. Robert , A. J. , Henderson , H. and Turnbull , C. 1972 . An implicit time integration scheme for baroclinic modes of the atmosphere. Mon. Wea. Re v . 100 , 329 – 335 .  

  15. R˜o˜om , R. 2001 . Nonhydrostatic adiabatic kernel for HIRLAM. Part I: Fundametals of nonhydrostatic dynamics in pressure-related coordinates . HIRLAM Technical Report 48 , 26 pp. Available from the HIRLAM member institutes or http://www.knmi.nl/hirlam/TechReports/T’R48ab.html .  

  16. R˜o˜om , R. and Männilc , A. 2002 . Non-hydrostatic adiabatic kernel for HIRLAM. Part BI. semi-implicit Eulerian scheme . HIRLAM Technical Report 55 , 25 pp . Available from the HIRLAM member institutes or http://www.knmi.nl/hirlamifechReports/TR55ab.html .  

  17. R˜o˜om , R. , Miranda , P. and Thorpe , A. 2001 . Filtered non-hydrostatic models in pressure related coordinates . Q. J. R. MeteoroL Soc . 127 , 1277 – 1291 .  

  18. R˜o˜om , R. 1990 . General form of the dynamical equations for the ideal atmosphere in the isobaric coordinate system . Izvestia, Atmos. and Oceanic Phys . 26 , 9 – 14 .  

  19. Salmon , R. and Smith , L. M. 1994 . Hamiltonian derivation of the nonhydrostatic pressure-coordinate model . Q. J. R. MeteoroL Soc . 120 , 1409 – 1413 .  

  20. Simmons , A. J. and Burridge , D. M. 1981 . An energy and angular momentum conserving vertical finite difference scheme and hybrid vertical coordinates . Mon. Wea. Rev . 109 , 109 – 766 .  

  21. Tanguay , M. , Robert , A. and Laprise , R. 1990 . A semi-implicit semi-Lagrangian fully compressible regional forecast model . Mon. Wea. Rev . 118 , 1970 – 1980 .  

  22. Tripoli , G. J. 1992 . A nonhydrostatic meoscale model designed to simulate scale interaction . Mon. Wea. Rev . 120 , 120 – 1359 .  

  23. White , A. A. 1989 . An extended version of nonhydrostatic, pressure coordinate model . Q. J. R. MeteoroL Soc . 115 , 1243 – 1251 .  

  24. Yeh , K.-S. , Cote , J. , Gravel , S. , Methot , A. , Patoine , A. , Roch , M. and Staniforth , A . 2002 . The CMC-MRB Global Environmental Multiscale (GEM) Model. Part BI: Nonhydrostatic Formulation . Mon. Wea. Rev . 130 , 130 – 356 .  

comments powered by Disqus