Start Submission Become a Reviewer

Reading: Multiple time level adjustment for data assimilation

Download

A- A+
Alt. Display

Original Research Papers

Multiple time level adjustment for data assimilation

Authors:

S. Zhang ,

GFDL/NOAA, Princeton University, P.O. Box 308, Princeton, NJ 08542, US
X close

J. L. Anderson,

GFDL/NOAA, Princeton University, P.O. Box 308, Princeton, NJ 08542, US
X close

Anthony Rosati,

GFDL/NOAA, Princeton University, P.O. Box 308, Princeton, NJ 08542, US
X close

Matthew Harrison,

GFDL/NOAA, Princeton University, P.O. Box 308, Princeton, NJ 08542, US
X close

Shree P. Khare,

GFDL/NOAA, Princeton University, P.O. Box 308, Princeton, NJ 08542, US
X close

Andrew Wittenberg

GFDL/NOAA, Princeton University, P.O. Box 308, Princeton, NJ 08542, US
X close

Abstract

Time-stepping schemes in ocean–atmosphere models can involve multiple time levels. Traditional data assimilation implementation considers only the adjustment of the current state using observations available, i.e. the one time level adjustment. However, one time level adjustment introduces an inconsistency between the adjusted and unadjusted states into the model time integration, which can produce extra assimilation errors. For time-dependent assimilation approaches such as ensemble-based filtering algorithms, the persistent introduction of this inconsistency can give rise to computational instability and requires extra time filtering to maintain the assimilation.

A multiple time level adjustment assimilation scheme is thus proposed, in which the states at times t and t — 1, t — 2, . . . , if applicable, are adjusted using observations at time t. Given a leap frog time-stepping scheme, a low-order (Lorenz-63) model and a simple atmospheric (global barotropic) model are used to demonstrate the impact of the two time level adjustment on assimilation results in a perfect model framework with observing/assimilation simulation experiments. The assimilation algorithms include an ensemble-based filter (the ensemble adjustment Kalman filter, EAKF) and a strong constraint four-dimensional variational (4D-Var) assimilation method. Results show that the two time level adjustment always reduces the assimilation errors for both filtering and variational algorithms due to the consistency of the adjusted states at times t and t — 1 that are used to produce the future state in the leap frog timestepping. The magnitude of the error reduction made by the two time level adjustment varies according to the availability of observations, the nonlinearity of the assimilation model and the strength of the time filter used in the model. Generally the sparser the observations in time, the larger the error reduction. In particular, for the EAKF when the model uses a weak time filter and for the 4D-Var method when the model is strongly nonlinear, two time level adjustment can significantly improve the performance of these assimilation algorithms.

How to Cite: Zhang, S., Anderson, J.L., Rosati, A., Harrison, M., Khare, S.P. and Wittenberg, A., 2004. Multiple time level adjustment for data assimilation. Tellus A: Dynamic Meteorology and Oceanography, 56(1), pp.2–15. DOI: http://doi.org/10.3402/tellusa.v56i1.14390
  Published on 01 Jan 2004
 Accepted on 25 Sep 2003            Submitted on 11 Feb 2003

References

  1. Anderson , J. L. 1996 . A method for producing and evaluating probabilistic forecasts from ensemble model integrations . J. Climate 9 , 1518 – 1530 .  

  2. Anderson , J. L. 2001 . An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Re v . 129 , 2884 – 2903 .  

  3. Anderson , J. L. 2003 . A local least squares framework for ensemble filtering. Mon. Wea. Re v . 131 , 634 – 642 .  

  4. Anderson , J. L. and Anderson , S. L. 1999 . A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Re v . 127 , 2741 – 2758 .  

  5. Asselin , R. 1972 . Frequency filter for time integrations. Mon. Wea. Re v . 100 , 487 – 490 .  

  6. Bishop , C. H. , Etherton , B. J. and Majumdar , S. 2001 . Adaptive sampling with the ensemble transform Kalman filter, part I. Mon. Wea. Re v . 129 , 420 – 436 .  

  7. Burgers , G. , van Leeuwen , P. J. and Evensen , G. 1998 . Analysis scheme in the ensemble Kalman filter. Mon. Wea. Re v . 126 , 1719 – 1724 .  

  8. Durran , D. R. 1999 . Numerical Methods for Wave Equations in Geophysical Fluid Dynamics . Springer , New York , 465 pp.  

  9. Evensen , G. 1994 . Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics . J. Geophys. Res . 99 , 10 143–10 162 .  

  10. Fukumori , I. 2002 . A partitioned Kalman filter and smoother. Mon. Wea. Re v . 130 , 1370 – 1383 .  

  11. Haltiner , G. J. and Williams , R. T. 1980 . Numerical Prediction and Dynamic Meteorology 2nd edn . Wiley , New York , 477 pp.  

  12. Hamill , T. M. , Whitaker , J. S. and Snyder , C. 2001 . Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Re v . 129 , 2776 – 2790 .  

  13. Hollingsworth , A. and Lönnberg , P. 1986 . The statistical structure of short-range forecast errors as determined from radiosonde data. Part I: The wind field . Tellus 38A , 111 – 136 .  

  14. Houtekamer , P. L. and Mitchell , H. L. 1998 . Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Re v . 126 , 796 – 811 .  

  15. Houtekamer , P. L. and Mitchell , H. L. 2001 . A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Re v . 129 , 123 – 137 .  

  16. Ide , K. , Courtier , P. , Ghil , M. and Lornec , A. 1997 . Unified nontation for data assimilation. Operational sequential and variational . J. Meteor Soc. Japan 75 , 181 – 189 .  

  17. Jazwinski , A. H. 1970 . Stochastic Processes and Filtering Theory . Academic Press , New York , 376 pp.  

  18. Kalnay , E. 2002 . Atmospheric Modeling, Data Assimilation and Predictability . Cambridge University Press , Cambridge , 341 pp.  

  19. Keppenne , C. L. 2000 . Data assimilation into a primitive equation model with a parallel ensemble Kalman filter. Mon. Wea. Re v . 128 , 1971 – 1981 .  

  20. Le Dimet , F. X. and Talagrand , O. 1986 . Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects . Tellus 38A , 97 – 110 .  

  21. Liu , D. C. and Nocedal , J. 1989 . On the limited memory BFGS method for large scale optimization . Math. Program . 45 , 503 – 528 .  

  22. Lorenz , E. N. 1963 . Deterministic non-periodic flow. J. Atmos. Sc i . 20 , 130 – 141 .  

  23. Miller , R. N. , Ghil , M. and Gauthiez , P. 1994 . Advanced data assimilation in strongly nonlinear dynamical system. J. Atmos. Sc i . 51 , 1037 – 1056 .  

  24. Miller , R. N. , Carter , E. F. and Blue , S. T. 1999 . Data assimilation into nonlinear stochastic models . Tellus 51A , 167 – 194 .  

  25. Mitchell , H. L. and Houtekamer , P. L. 2000 . An adaptive ensemble Kalman filter. Mon. Wea. Re v . 128 , 416 – 433 .  

  26. Navon , I. M. , Zou , X. , Derber , J. and Sela , J. 1992 . Variational data assimilation with an adiabatic version of the NMC spectral model. Mon. Wea. Re v . 120 , 1433 – 1446 .  

  27. Pires , C. , Vautard , R. and Talagrand , O. 1996 . On extending the limits of variational assimilation in nonlinear chaotic systems . Tellus 48A , 96 – 121 .  

  28. Robert , A. 1969 . The integration of a spectral model of the atmosphere by the implicit method. Proc. WMO/IUGG Symposium on IVW P . Japan Meteorological Society, Tokyo , Japan , 19 - 24 .  

  29. Saltzman , B. 1962 . Finite amplitude free convection as an initial value problem - I. J. Atmos. Sc i . 19 , 329 – 341 .  

  30. Sirkes , Z. and Tziperman , E. 1997 . Finite difference of adjoint or adjoint of finite difference? Mon. Wea. Re v . 120 , 3373 – 3378 .  

  31. Thiebaux , H. J. 1985 . On approximations to geopotential and wind-field correlation structures . Tellus 37A , 126 – 131 .  

  32. Van Leeuwen , P. J. 1999 . Comment on “Data assimilation using an ensemble Kalman filter technique” . Mon. Wea. Rev . 127 , 1374–1377 .  

  33. Whitaker , J. S. and Hamill , T. M. 2002 . Ensemble data assimilation without perturbed observations. Mon. Wea. Re v . 130 , 1913 – 1924 .  

  34. Zhang , S. and Anderson , J. L. 2003 . Impact of spatially and temporally varying estimates of error covariance on assimilation in a simple atmospheric model . Tellus 55A , 126 – 147 .  

  35. Zhang , S. , Thou , X. and Ahlquist , J. E. 2001 . Examination of numerical results from tangent linear and adjoint of discontinuous nonlinear models. Mon. Wea. Re v . 129 , 2791 – 2804 .  

  36. Zupanslci , M. 1993 . A preconditioning algorithm for large-scale minimization problems . Tellus 45A , 478 – 492 .  

comments powered by Disqus