Start Submission Become a Reviewer

Reading: Finding the effective parameter perturbations in atmospheric models: the LORENZ63 model as c...

Download

A- A+
Alt. Display

Original Research Papers

Finding the effective parameter perturbations in atmospheric models: the LORENZ63 model as case study

Authors:

Hanneke E. Moolenaar ,

Group Mathematical and Statistical Methods, Wageningen University, PO Box 100, 6700 AC Wageningen; Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE De Bilt, NL
X close

Frank M. Selten

Royal Netherlands Meteorological Institute (KNMI), PO Box 201, 3730 AE De Bilt, NL
X close

Abstract

Climate models contain numerous parameters for which the numeric values are uncertain. In the context of climate simulation and prediction, a relevant question is what range of climate outcomes is possible given the range of parameter uncertainties. Which parameter perturbation changes the climate in some predefined sense the most? In the context of the LORENZ 63 model, a method is developed that identifies effective parameter perturbations based on short integrations. Use is made of the adjoint equations to assess the sensitivity of a short integration to a parameter perturbation. A key feature is the selection of initial conditions.

How to Cite: Moolenaar, H.E. and Selten, F.M., 2004. Finding the effective parameter perturbations in atmospheric models: the LORENZ63 model as case study. Tellus A: Dynamic Meteorology and Oceanography, 56(1), pp.47–55. DOI: http://doi.org/10.3402/tellusa.v56i1.14392
  Published on 01 Jan 2004
 Accepted on 19 Sep 2003            Submitted on 4 Feb 2003

References

  1. Barkmeijer , J. 1996 . Constructing fast-growing perturbations for the non-linear regime. J. Atmos. Sc i . 53 , 2838 – 2851 .  

  2. Barluneijer , J. , Iversen , T. and Palmer , T. N. 2002 . Forcing singular vectors and other sensitive model structures . Q. J. R. Meteor Soc . 12 , 2401 – 2424 .  

  3. Corti , S. and Palmer , T. N. 1997 . Sensitivity analysis of atmospheric low-frequency variability . Q. J. R. Meteorol. Soc . 123 , 2425 – 2447 .  

  4. Dickinson , R. P. and Gelinas , R. J. 1976 . Sensitivity analysis of ordinary differential equation systems—a direct method . J. Comp. Phys . 21 , 123 – 143 .  

  5. Errico , R. M. 1997 . What is an adjoint model? Bull. Amer Soc . 78 , 2576 – 2591 .  

  6. Hall , M. C. G. 1986 . Application of adjoint sensitivity theory to an atmospheric general circulation model. J. Atmos. Sc i . 43 , 2644 – 2651 .  

  7. IPCC 2001 . Climate Change 2001: The Scientific Basis. Contribution of Working Group Ito the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds. J. T. Houghton , Y. Ding , D. J. Griggs , M. Noguer , P. J. van der Linden , X. Dai , K. Maskell and C. A . Johnson ). Cambridge University Press , Cambridge , pp. 511  

  8. Lea , D. J. , Allen , M. R. and Haine , T. W. N. 2000 . Sensitivity analysis of the climate of a chaotic system . Tellus 52A , 523 – 532 .  

  9. Lorenz , E. N. 1963 . Deterministic nonperiodic flow. J. Atmos. Sc i . 20 , 130 – 141 .  

  10. Oortwijn , J. and Barkmeijer , J. 1995 . Perturbations that optimally trigger weather regimes. J. Atmos. Sc i . 52 , 3932 – 3944 .  

  11. Palmer , T. N. 1999 . A nonlinear dynamical perspective on climate prediction . J. Climate 12 , 575 – 591 .  

  12. Press , W. H. , Flannery , B. P. , Teukolsky , S. A. and Vetterling , W. T. 1986 . Numerical Recipes Section 2.6. Cambridge University Press, Cambridge.  

comments powered by Disqus