Start Submission Become a Reviewer

Reading: Effect of a wavy wall on the single gyre Munk problem

Download

A- A+
Alt. Display

Original Research Papers

Effect of a wavy wall on the single gyre Munk problem

Authors:

Frédéric Dupont ,

Coastal Ocean Sciences, Bedford Institute of Oceanography, PO Box 1006, Dartmouth, NS, B2Y-4A2, CA
X close

David N. Straub

Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke W, H3A 2K6, Montréal, Québec, CA
X close

Abstract

Aspectral element shallowwater model with an adaptive triangular mesh is used to examine the effects of basin geometry on the single gyre Munk problem. Specifically, we consider a circular basin shape, with and without the addition of a sinusoidal undulation in the coastline. We are particularly interested in how the curviness of the coastline might effect the well-known tendency of the solution to ‘runaway’ as the lateral viscous coefficient is made small. Results were dependent on boundary conditions.We consider both no slip and three variants of the free slip condition: zero vorticity at the coast, zero normal derivative of tangential velocity and zero normal flux of tangential momentum. For cases where the coastal undulations were large in amplitude, the no slip and the third free slip condition showed the least tendency towards runaway (i.e. towards developing unrealistically large velocities as the viscous coefficient was made small). In the circular geometry, by contrast, the differences between no slip and free slip were much greater, and of the variants on free slip, the zero vorticity condition showed the least tendency towards runaway.We also show that high-frequency variability (such as Kelvin waves) can differ markedly depending on which of the three free slip variants is used.

How to Cite: Dupont, F. and Straub, D.N., 2012. Effect of a wavy wall on the single gyre Munk problem. Tellus A: Dynamic Meteorology and Oceanography, 56(4), pp.387–399. DOI: http://doi.org/10.3402/tellusa.v56i4.14422
  Published on 01 Jan 2012
 Accepted on 9 Feb 2004            Submitted on 7 Jul 2003

References

  1. Adcroft , A. and Marshall , D. 1998 . How slippery are piecewise constant coastlines in numerical ocean models . Tellus 50A , 95 – 108 .  

  2. Babuska , I. 1971 . Error bounds for finite elements methods . Numer. Math . 16 , 322 – 333 .  

  3. Beardsley , R. C. 1973 . A numerical model of the wind-driven ocean circulation in a circular basin . Geophys. Fluid Dyn . 4 , 211 – 241 .  

  4. Brezzi , E, 1974 . On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers . RAIRO, Anal. Num . 8 ( R2 ), 129 – 151 .  

  5. Briggs , W. L. 1980 . A new class of steady solutions of the barotropic vorticty equation . Dyn. Atmos. Oceans 4 , 67 – 99 .  

  6. Cockburn , B. , Hou , S. and Shu , C.-W. 1990 . TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case . Math. Comput . 54 , 545 – 581 .  

  7. Davey , M. K. , Hsieh , W. W. and Wajsowicz , R. C. 1983 . The free Kelvin wave with lateral and vertical viscosity . J. Phys. Oceanogr . 13 , 2182 – 2191 .  

  8. Dupont , E and Lin , C. A . 2004 . The adaptive spectral element method and comparisons with more traditional formulations for ocean modelling . J. Mar. Atmos. Technol . 21 , 135 – 197 .  

  9. Dupont , E , Straub , D. N. and Lin , C. A. 2003 . Influence of a step-like coastline on the basin scale voracity budget of mid-latitude gyre models . Tellus 55A , 255 – 272 .  

  10. Gent , P. R. 1993 . The energetically consistent shallow water equations. J. Atmos. Sc i . 50 , 1323 – 1325 .  

  11. Harrison , D. E. and Holland , W. R. 1981 . Regional eddy voracity transport and the equilibrium voracity budgets of a numerical model ocean circulation . J. Phys. Oceanogr . 11 , 190 – 208 .  

  12. Ierley , G. R. and Sheremet , V. A. 1995 . Multiple solutions and advection-dominated flows in the wind-driven circulation. Part I: slip . J. Mar. Res . 53 , 703 – 738 .  

  13. Iskandarani , M. , Haidvogel , D. B. and Boyd , J. P. 1995 . A staggered spectral element model with application to the oceanic shallow water equations . Int. J. Numer. Methods Fluids 20 , 393 – 414 .  

  14. Kiss , A. E. 2002. Potential voracity “crisis”, adverse pressure gradient, and western boundary current separation. J. Mar. Res . 60 , 60 – 803 .  

  15. Ladyzhenskaya , O. A. 1969 . The Mathematical Theory of Viscous Incompressible Flow . Gordon and Breach , London .  

  16. Lomtev , I. and Kamiadakis , G. 1999 . A discontinuous Galerkin method for the Navier-Stokes equations , Int. J. Numer. Methods Fluids 29 , 587 – 603 .  

  17. Luyten , J. R. , Pedlosky , J. and Stommel , H. 1983 . The ventilated thermocline , J. Phys. Oceanogr . 13 , 292 – 309 .  

  18. Ma , H., 1993 . A spectral element basin model for the shallow water equations . J. Comput. Phys . 109 , 133 – 149 .  

  19. Madec , G. , Chortler , M. , Delecluse , P. and Crepon , M. 1991 . A three-dimensional study of deep-water formation in the northwestern mediterranean sea . J. Phys. Oceanogr . 21 , 1349 – 1371 .  

  20. Marshall , J. C. 1984. Ed dy mean flow interaction in a barotropic ocean model. Q. J. R. Meteorol. Soc . 110 , 110 – 590 .  

  21. Mavriplis , C. and Hsu , L.-C. 1997 . A two-dimensional adaptive spectral element method. In: 13th AMA Computational Fluid Dynamics Conference , American Meteorological Society, Snowmass, CO .  

  22. Pedlosky , J., 1996 . Ocean Circulation Theory . Springer-Verlag , Heidelberg .  

  23. Rhines , P. B. and Young , W. R. 1982 . Homogenization of potential vorticity in planetary gyres . J. Fluid Mech . 122 , 347 – 367 .  

  24. Scott , R. B. and Straub , D. N. 1998 . Small viscosity behaviour of a homogeneous, quasi-geostrophic, ocean circulation model . J. Mar. Res . 56 , 1225 – 1258 .  

  25. Shchepetkin , A. E and O’Brien , J. 1996. A physically consistent formulation of lateral friction in shallow-water equation ocean models. Mon. Wea. Rev . 124 , 1285–130 0 .  

  26. Taylor , M. and Wingate , B. 2000 . A generalized diagonal mass matrix spectral element method for non-quadrilateral elements . Appl. Numer. Math . 33 , 259 – 265 .  

comments powered by Disqus