Start Submission Become a Reviewer

Reading: A high-latitude quasi-geostrophic delta plane model derived from spherical geometry

Download

A- A+
Alt. Display

Original Research Papers

A high-latitude quasi-geostrophic delta plane model derived from spherical geometry

Author:

Uwe Harlander

Netherlands Institute for Sea Research, PO Box 59, 1790 AB Texel, NL
X close

Abstract

For quasi-geostrophic models, the beta plane approximation is well established and can be derived from spherical geographic coordinates. It has been argued that such a connection does not exist for a higher-order approximation, the so-called delta plane. Here it will be demonstrated that a quasi-geostrophic potential vorticity equation on the delta plane can formally be derived using rotated geographic instead of geographic coordinates. The rigorous derivation of such a model from the shallow-water equations leads to a correction of previous more intuitive-based formulations of the delta plane model. Some applications of the corrected delta plane model are given. It is shown that the delta plane model describes well the low-frequency basin modes of a polar plane shallow-water model. Moreover, it is found that the westward phase speed of the delta plane model shows a dependency on latitude comparable to a model on the sphere. The ratio of delta to beta plane zonal phase speed decreases monotonically with increasing latitude, in qualitative agreement with the phase speed ratio obtained by comparing a spherical to a beta plane model. Finally, it is demonstrated analytically that Rossby wave energy rays are curved on the delta plane, in contrast to the beta plane. Ray curvature is important for a realistic description of energy dispersion at high latitudes. The results suggest that the quasi-geostrophic delta plane model is a suitable tool for conceptual studies on Rossby wave dynamics at high latitudes.

How to Cite: Harlander, U., 2005. A high-latitude quasi-geostrophic delta plane model derived from spherical geometry. Tellus A: Dynamic Meteorology and Oceanography, 57(1), pp.43–54. DOI: http://doi.org/10.3402/tellusa.v57i1.14601
  Published on 01 Jan 2005
 Accepted on 24 May 2004            Submitted on 14 Jul 2003

References

  1. Bridger , A. F. C. and Stevens , D. E. 1980 . Long atmospheric waves and the polar-plane approximation to the Earth’s spherical geometry . J. Atmos. Sci . 37 , 534 – 544 .  

  2. Busse , E H. and Or , A. C. 1986 . Convection in a rotating cylindrical annulus: thermal Rossby waves . J. Fluid Mech . 166 , 173 – 187 .  

  3. Haarsma , R. J. , Selten , F. M. and Opsteegh , J. D. 2000 . On the mechanism of the Antarctic circumpolar wave . J. Climate 13 , 1461 – 1480 .  

  4. Haltiner , G. J. and Williams , R. G. 1980 . Numerical Prediction and Dynamic Meteorology . Wiley , New York .  

  5. Harlander , U. , Schönfeldt , H.-J. and Metz , W. 2000 . Rossby waveguides in high-latitude shear flows with boundaries . J. Geophys. Res . 105 , 17 063–17 078 .  

  6. Haurwitz , B. 1975 . Long circumpolar atmospheric waves . Arch. Meteor. Geophys. Bioklim. A 24 , 1 – 18 .  

  7. Hoskins , B. J. and Karoly , D. J. 1981 . The steady linear response of a spherical atmosphere to thermal and orographic forcing . J. Atmos. Sci . 38 , 1179 – 1196 .  

  8. LeB lond , P. H. 1964 . Planetary waves in a symmetrical polar basin . Tellus 16 , 503 – 512 .  

  9. Lee , L.-L. and Cazenave , A. (eds) . 2000 . Satellite Altimetty and Earth Sciences: A Handbook of Techniques and Applications. Academic , New York , 463 pp.  

  10. Lindzen , R. S. 1967 . Planetary waves on beta-planes . Mon. Wea. Rev . 95 , 441 – 451 .  

  11. Longuet-Higgins , M. S. 1964a . Planetary waves on a rotating sphere . Proc. R. Soc., A 279 , 446 – 473 .  

  12. Longuet-Higgins , M. S. 1964b . Planetary waves on a rotating sphere . II. Proc. R. Soc., A 280 , 40 – 68 .  

  13. Maas , L. R. M. 2001 . Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids . J. Fluid Mech . 437 , 13 – 28 .  

  14. Matsuno , T. 1966 . Quasi-geostrophic motions in the equatorial area . J. MeteoroL Soc. Japan 44 , 25 – 43 .  

  15. Nezlin , M. V. and Snezhlcin , E. N. 1993 . Rossby Vortices, Spiral Struc-tures, Solitons , Springer Series in Non-Linear Dynamics , Springer-Verlag, Berlin , 223 pp.  

  16. Nof , D. 1990 . Modons and monopoles on a y -plane . Geophys. Astrophys . Fluid Dyn . 52 , 71 – 87 .  

  17. Nycander , J. and Sutyrin , G. G. 1992 . Steadily translating anticyclones on the beta plane . Dyn. Atmos. Oceans 16 , 473 – 498 .  

  18. Or , A. C. and Busse , F. H. 1987 . Convection in a rotating cylindrical annulus, Part 2, Transitions to asymmetric and vacillating flow . J. Fluid Mech . 174 , 313 – 326 .  

  19. Pedlosky , J. 1987 . Geophysical Fluid Dynamics . Springer-Verlag , Berlin , 710 pp.  

  20. Phillips , N. A. 1963 . Geostrophic motions . Rev. Geophys . 1 , 123 – 176 .  

  21. Rossby , C. G. 1939 . Relation between variations in the intensity of the zonal circulation of the atmosphere and displacement of the semi-permanent centres of action . J. Marine Res . 2 , 38 – 55 .  

  22. Temme , N. M. 1996 . Special Functions . Wiley-Interscience , New York .  

  23. van der Toorn , R. 1997 . Geometry , angular momentum and the intrinsic drift of oceanic monopolar vortices. PhD Thesis , University of Utrecht , the Netherlands .  

  24. Verkley , W. T. M. 1984 . The construction of barotropic modons on a sphere . J. Atmos. Sci . 41 , 2492 – 2504 .  

  25. Verkley , W. T. M. 1990 . On the beta plane approximation . J. Atmos. Sci . 47 , 2453 – 2460 .  

  26. White , W. B. and Peterson , R. G. 1996 . An Antarctic circumpolar wave in surface pressure, wind, temperature and sea-ice extent . Nature 380 , 699 – 702 .  

  27. Wimmer , M. 2000 . Taylor vortices at different geometries. In: Physics of Rotating Fluids (eds C. Egbers , and G. Pfister ). Springer-Verlag , Berlin , 194 - 212 .  

  28. Yang , H. 1987 . Evolution of a Rossby wave packet in barotropic flows with asymmetric basic current, topography and s-effect . J. Atmos. Sci . 44 , 2267 – 2276 .  

  29. Yang , H. 1991 . Wave Packets and Their Bifurcations in Geophysi-cal Fluid Dynamics , Applied Mathematics Series Vol. 85 , Springer-Verlag, Berlin , 247 pp.  

comments powered by Disqus