Start Submission Become a Reviewer

Reading: Downscaling of DEMETER winter seasonal hindcasts over Northern Italy

Download

A- A+
Alt. Display

Original Research Papers

Downscaling of DEMETER winter seasonal hindcasts over Northern Italy

Authors:

V. Pavan ,

ARPA-SIM, Bologna, IT
X close

S. Marchesi,

ARPA-SIM, Bologna, IT
X close

A. Morgillo,

ARPA-SIM, Bologna, IT
X close

C. Cacciamani,

ARPA-SIM, Bologna, IT
X close

F. J. Doblas-Reyes

ECMWF, Shinfield Park, Reading RG2 9AX, GB
X close

Abstract

A novel method is applied in order to obtain winter predictions over Northern Italy using state-of-the-art multi-model seasonal ensemble hindcasts. The method consists of several stages. In the first stage, the best predictions are computed for a group of eight indices of large-scale circulation variability using the multi-model ensemble data set. The predictions are multiple linear regressions of single-model ensemble mean hindcasts produced within the European project DEMETER using six different coupled models. The regression is obtained using the method of the best linear unbiased estimate (BLUE). In the second stage, a standard statistical downscaling technique of the ‘perfect prog’ kind is applied in order to predict a group of 12 surface predictands starting from a group of predictors selected between the large-scale indices identified during the first stage. The selection of the predictands is carried out empirically, using those which lead to the best final prediction, while the regression coefficients are defined using observational data only, as in a ‘perfect prog’ downscaling technique. All steps of the prediction computation up to this point are performed in cross-validation mode. Finally, the full high-resolution surface winter predictions are reconstructed using an adequate selection of the forecasted predictands.

The predictions obtained have a much higher detail than the DEMETER direct model output predictions and, in parts of the domain, they are characterized by substantially significant skill. The improvement of the skill with respect to single-model ensembles is due to the use of the BLUE technique, while the statistical downscaling allows us to increase significantly the detail of the prediction. The study includes a discussion on the sensitivity of the results to both the period in years and the number of models used to produce the forecasts, and a comparison with the results obtained using a simple multi-model forecast in which all models are given the same weight.

How to Cite: Pavan, V., Marchesi, S., Morgillo, A., Cacciamani, C. and Doblas-Reyes, F.J., 2005. Downscaling of DEMETER winter seasonal hindcasts over Northern Italy. Tellus A: Dynamic Meteorology and Oceanography, 57(3), pp.424–434. DOI: http://doi.org/10.3402/tellusa.v57i3.14665
  Published on 01 Jan 2005
 Accepted on 25 Oct 2004            Submitted on 31 Mar 2004

References

  1. Barnston , A. G. and Livezey , R. E. 1987 . Classification, seasonality and persistence of low-frequency atmospheric circulation patterns . Mon. Wea. Rev . 115 , 1083 – 1126 .  

  2. Bjerknes , J. 1962 . Synoptic surveyof the interaction of sea and atmosphere in the North Atlantic . Geophys. Norvegica 24 ( 3 ), 115 – 145 .  

  3. Bjerknes , J. 1964 . Atlantic air-sea interaction . Adv. Geophys . 10 , 1 – 82 .  

  4. Branckovié , Č. and Palmer , T. N. 2000 . Seasonal skill amd predictability of ECMWF PROVOST ensembles . Q. J. R. Meteorol. Soc . 126 , 2035 – 2068 .  

  5. Branstator , G. 1985 . Analysis of general circulation model sea surface temperature anomaly simulations using a linear model. Part I: forced solutions . J. Atmos. Sci . 42 , 2225 – 2241 .  

  6. Cacciamani , C. , Nanni , S. and Tibaldi , S. 1994 . Mesoclimatology of winter temperature and precipitation in the Po Valley of Northern Italy . Int. J. Climatol . 14 , 777 – 814 .  

  7. d’Andrea , E , Tibaldi , S. , Blackburn , M. , Boer , G. , Déqué , M. and co-authors . 1998 . Northern Hemisphere atmospheric blocking as simulated by 15 atmospheric general circulation models in the period 1979–1988 . Clim. Dyn . 14 , 385 – 407 .  

  8. Deser , C. and Blackmon , M. L. 1993 . Surface climate variations over the North Atlantic Ocean during winter: 1900–1989 . J. Climate 6 , 1743 – 1753 .  

  9. Doblas-Reyes , E J. , Déque , M. and Piedeliévre , J. -Ph. 2000. Multi-model spread and probabilistic seasonal forecasts of the North Atlantic Oscillation. Q. J. R. Meteorol. Soc . 126 , 126 – 2088 .  

  10. Ferranti , L., Molteni , E and Palmer , T. N. 1994 . Impact of localized and extratropical SST anomalies in ensembles of seasonal GCM integrations . Q. J. R. Meteorol. Soc . 120 , 1613– 1645 .  

  11. Frei , C. and Schar , C. 1998 . A precipitation climatology of the Alps from high-resolution rain-gauge observations . Int. J. Climatol . 18 , 873 – 900 .  

  12. Girolamo , A. and Libera , A. 1990 . A national climatic database: the Italian experience . Internal Technical Report , AGRISIEL SpA .  

  13. Hagedorn , R. , Doblas-Reyes , E J. and Palmer , T. N. 2005 . The rationale behind the success of multi-model ensembles in seasonal forecasting - I. Basic concept. Tellus 57 A , 219 - 233 .  

  14. Harrison , M. S. J. , Palmer , T. N. , Richardson , D. S. , Buizza , R. and Petroliagis , T. 1996 . Joint ensembles from the UKMO and ECMWF models. In: Proceedings of ECMWF seminar on Predictability ( 4–8 September 1995), Vol. II, ECMWF, Reading, UK , 61 - 120 .  

  15. Hartmann , H. C. , Pagano , T. C. , Sorooshian , S. and Bales , R. 2002 . Confidence builder: evaluating seasonal climate forecasts for user perspectives . Bull. Am. Meteorol. Soc . 83 , 683 – 698 .  

  16. Hoskins , B. J. and Karoly , D. J. 1981 . The steady linear response of a spherical atmosphere to thermal and orographic forcing . J. Atmos. Sci . 38 , 1179 – 1196 .  

  17. Hurrell , J. W. and van Loon , H. 1997 . Decadal variations in climate associated with the North Atlantic oscillation . Clim. Change 36 , 301 – 326 .  

  18. Katz , R. and Murphy , A. 1997 . Economic Value of Weather and Climate Forecasts . Cambridge University Press , Cambridge , 1 - 222 .  

  19. Kharin , V. V. and Zwiers , E W. 2002 . Climate prediction with multi-model ensembles . J. Climate 15 , 793 – 799 .  

  20. Krishnamurti , T. N. , Kishtawal , C. M. , Timoty , E. L. , Bachiochi , D. R. , Zhang , Z. and co-authors . 1999 . Improved weather and seasonal climate forecasts from multi-model superensemble. Science 285 , 1548 – 1550.  

  21. Kunkel , K. , Pielke , R. A. Jr. and Changnon , S. A. 1999 . Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review . Bull. Am. Meteorol. Soc . 80 , 1077 – 1098 .  

  22. Lin , H. and Derome , J. 2003 . The atmospheric response to North Atlantic SST anomalies in unseasonal prediction experiments . Tellus 55A , 193 – 207 .  

  23. Murnane , R. J. , Crowe , M. , Eustis , A. , Howard , S. , Koepsell , J. and co-authors. 2002. The weather risk manegement industry’s climate forecast and data needs . Bull. Am. Meteorol. Soc . 83 , 83 – 1198 .  

  24. Palmer , T. N. and Anderson , D. L. T. 1994 . The prospects for seasonal forecasting: a review paper . Q. J. R. Meteorol. Soc . 120 , 755 – 793 .  

  25. Palmer , T. N. and Sun , Z. 1985 . A modelling and observational study of the relationship between sea surface temperature anomalies in the north-west Atlantic and the atmospheric general circulation . Q. J. R. Meteorol. Soc . 111 , 947 – 975 .  

  26. Palmer , T. N. , Alessandri , A. , Andersen , U. , Cantelaube , P. , Davey , M. and co-authors. 2004. DEMETER: Development of a European multi-model ensemble system for seasonal to interannual prediction . Bull. Am. Meteorol. Soc . 85 , 85 – 872 .  

  27. Pavan , V. and Doblas-Reyes , E 2000 . Multi-model seasonal hindcasts over the Euro-Atlantic: skill scores and dynamic features . Clim. Dyn . 16 , 611 – 625 .  

  28. Pavan , V., Molteni, E and Brankovié , Č. 2000a. Wintertime variability in the Euro-Atlantic region in observations and in ECMWF seasonal ensemble experiments. Q. J. R. Meteorol. Soc . 126 , 2143–217 3 .  

  29. Pavan , V. , Tibaldi , S. and Brankovié , Č. 2000b . Seasonal prediction ofblocking frequency: results from winter ensemble experiments . Q. J. R. Meteorol. Soc . 126 , 2125 – 2142 .  

  30. Pielke , R. Jr. and Carbone , R. E. 2002 . Weather impacts, forecasts, and policy . Bull. Am. Meteorol. Soc . 83 , 393 – 403 .  

  31. Quadrelli , R. , Lazzeri , M. , Cacciamani , C. and Tibaldi , S. 2001 . Observed winter alpine precipitation variability and links with large-scale circulation patterns . Climate Res . 17 , 275 – 284 .  

  32. Ratcliffe , R. A. S. and Murray , R. 1970 . New lag assosiation between North Atlantic sea temperature and European pressure applied to long-range weather forecasting . Q. J. R. Meteorol. Soc . 96 , 226 – 246 .  

  33. Rogers , J. C. 1990 . Patterns of low-frequency monthly sea-level pressure variability (1899–1989) and associated wave cyclones frequencies . J. Climate 3 , 1364 – 1379 .  

  34. Sarda , J. , Plaut , G. , Pires , C. and Vautard , R. 1996 . Statistical and dynamical long-range atmospheric forecasts: experimental comparison and hybridization . Tellus 48A , 518 – 537 .  

  35. Simmons , A. J. and Gibson , J. K. 2000 . The ERA-40 Project Plan. ERA-40 Project Report Series No. 1. ECMWF, Reading, UK.  

  36. Thompson , P. D. 1977 . How to improve accuracy by combining independent forecasts . Mon. Wea. Rev . 105 , 228 – 229 .  

  37. Tibaldi , S. and Molteni , E 1990 . On the operational predictability of blocking . Tellus 42A , 343 – 365 .  

  38. Tibaldi , S. , Tosi , E. , Navarra , A. and Pedulli , L. 1994 . Northern and Southern Hemisphere seasonal variability of blocking frequency and predictability . Mon. Wea. Rev . 122 , 1971 – 2003 .  

  39. Tomozeiu , R. , Busuioc , A. , Marletto , V., Zinoni , E and Cacciamani , C. 2000 . Detection of changes in the summer precipitation time series of the region Emilia-Romagna, Italy. Theor AppL Climatol . 67 , 67 – 200 .  

  40. Tomozeiu , R. , Busuioc , A. and Stefan , S. 2002a . Changes in seasonal mean maximum air temperature in Romania and their connection with large-scale circulation . Int. J. Climatol . 22 , 181 – 196 .  

  41. Tomozeiu , R. , Lazzeri , M. and Cacciamani , C. 2002b . Precipitation fluctuations during winter season from 1960 to 1995 over Emilia-Romagna, Italy . Theor AppL Climatol . 72 , 221 – 229 .  

  42. UCEA 1990 . Analisi climatologica e progettazione della rete agrometeorologica nazionale. Technical report for the Ministero dell’ Agricoltura e delle foreste , Direzione generale della produzione agricola. UCEA , Rome , Italy .  

  43. Uppala , S. 2002 . ECMWF Reanalysis 1957–2001, ERA-40. In: ERA-40 Project Report Series No . 3 , ECMWF, Reading, 1-10, (also available from http://www.ecmwf.int/publications/library/ecpublications/proceedings/ERA40-reanalysis_workshop/index.html ).  

  44. Wallace , J. M. and Gutzler , D. S. 1981 . Teleconnection in the geopotential height field during the Northern Hemisphere winter . Mon. Wea. Rev . 109 , 784 – 812 .  

  45. Wilks , S. D. 1995 . Statistical Methods in the Atmospheric Sciences , International Geophysics Series (eds R. Dmowska and J. R. Holton ), Academic , New York , 1 - 467 .  

comments powered by Disqus