Start Submission Become a Reviewer

Reading: Seasonal weather forecasts for crop yield modelling in Europe

Download

A- A+
Alt. Display

Original Research Papers

Seasonal weather forecasts for crop yield modelling in Europe

Authors:

Pierre Cantelaube,

European Commission Joint Research Centre/Institute for Environment and Sustainability, TP 262, I-21020 Ispra (VA), IT
X close

Jean-Michel Terres

European Commission Joint Research Centre/Institute for Environment and Sustainability, TP 262, I-21020 Ispra (VA), IT
X close

Abstract

Within the European DEMETER project, ensembles of global coupled climate models have shown some skill for seasonal climate prediction. Meteorological outputs of the seasonal prediction system were used in a crop yield model to assess the performance and usefulness of such a system for crop yield forecasting.

An innovative method for supplying seasonal forecast information to crop simulation models was developed. It consisted in running a crop model from each individual downscaled member output of climate models. An ensemble of crop yield was obtained and a probability distribution function (PDF) was derived. Preliminary results of wheat yield simulations in Europe using downscaled DEMETER seasonal weather forecasts suggest that reliable crop yield predictions can be obtained using an ensemble multi-model approach. When compared to the operational system, for the same level of accuracy, earlier crop forecasts are obtained with the DEMETER system. Furthermore, PDFs of wheat yield provide information on both the yield anomaly and the uncertainty of the forecast. Based on the spread of the PDF, the user can directly quantify the benefits and risk of taking weather-sensitive decisions.

It is shown that the use of ensembles of seasonal weather forecast brings additional information for the crop yield forecasts and therefore has valuable benefit for decision-making in the management of European Union agricultural production.

How to Cite: Cantelaube, P. and Terres, J.-M., 2005. Seasonal weather forecasts for crop yield modelling in Europe. Tellus A: Dynamic Meteorology and Oceanography, 57(3), pp.476–487. DOI: http://doi.org/10.3402/tellusa.v57i3.14669
2
Views
  Published on 01 Jan 2005
 Accepted on 2 Dec 2004            Submitted on 30 Mar 2004

References

  1. Barnston , A. G. and Livezey , R. E. 1987 . Classification, seasonality and persistence of low-frequency atmospheric circulation patterns . Mon. Weather Rev . 115 , 1083 – 1126 .  

  2. Cantelaube , P. and Terres , J. M. 2003 . Use of Seasonal Forecasts on Crop Yield Modelling. Publication of the European Commission, EUR 20996 EN.  

  3. Cantelaube , P. , Terres , J. M. and Doblas-Reyes , F. J. 2004 . Influence of climate variability on European agriculturean analysis of winter wheat production . Clim. Res . 27 , 135 – 144 .  

  4. Doblas-Reyes , F. J. , Deque , M. and Piedelievre J. -Ph. 2000. Multi-model spread and probabilistic seasonal forecasts in PROVOST. Q. J. R. Meteorol. Soc . 126 , 126 – 2088 .  

  5. Doblas-Reyes , F. J. , Hagedorn , R. and Palmer , T. N. 2005 . The rationale behind the success of multi-model ensembles in seasonal forecasting - II. Calibration and combination . Tellus 57A , 234 – 252 .  

  6. European Commission . 1997 . Towards a Common Agricultural and Rural Policy for Europe . Convened by Commission of European Communities . Directorate General for Agriculture (http : //europa.eu.int/comm/agriculture/publi/buck_en/cover.htm ).  

  7. European Commission . 1999 . La politique Agricole commune, synthese 1999. Directorate General for Agriculture . Office des publications officielles des Communaute’s europeennes, Luxembourg , 2000 , 30 pp .  

  8. FAOSTAT . 2001 . FAO Statistical Databases . Food and Agriculture Organization of the United Nation. Rome , Italy .  

  9. Feddersen , H. and Andersen , U. 2005 . A method for statistical down-scaling of seasonal ensemble predictions. Tellus 57A , this issue .  

  10. Genovese , G. 1998 . The methodology, the results and the evaluation of the MARS crop yield forecasting system, in Agrometeorological Application for Regional Crop Monitoring and Production Assessment, Account of the EU Support group on Agrometeorology (SUGRAM), Office for Official Publications of the European Communities, Luxembourg. Report No. EUR 17735 EN, 67 - 119 .  

  11. Hagedorn , R. , Doblas-Reyes , E J. and Palmer , T. N. 2005 . The rationale behind the success of multi-model ensembles in seasonal forecasting - I. Basic concept . Tellus 57A , 219 – 233 .  

  12. Hammer , G. L. , Hansen , J. W. , Phillips , J. G. , Mjelde J. W. , Hill , H. and co-authors. 2001. Advances in application of climate prediction in agriculture . Agricultural Systems 74 , 515 – 553.  

  13. Hansen , J. W. 2002 . Applying seasonal climate prediction to agriculture production . Agricultural Systems 74 , 305 – 307 .  

  14. Hoogenboom , G. 2000 . Contribution of agrometeorology to the simulation of crop production and its application . Agric. For Meteorol . 103 , 137 – 157 .  

  15. Jones , J. W. , Hansem , J. W. , Royce F. S. and Messina , C. D. 2000 . Potential benefits of climate forecasting in Agriculture . Agric. EcosysL Environ . 82 , 169 – 184 .  

  16. Lemos , M. C. , Finan , T. J. , Fox , R. W. , Nelson D. R. and Tucker J. 2002 . The use of seasonal forecasting in policymaking: lessons from the north-east Brazil . Clim. Change 55 , 479 – 507 .  

  17. Marletto , V. , Zinoni , E , Criscuolo , L. , Fontana , G. , Marchesi , S. and co-authors. 2005. Evaluation of downscaled DEMETER multi-model ensemble seasonal hindcasts in a northern Italy location by means of a model of wheat growth and soil water balance . Tellus 57A , 488 - 497 .  

  18. Marshall , J. , Kushnir , Y. , Battisti , D. , Chang , P. , Czaja , A. and co-authors. 2001 . North Atlantic climate variability: phenomena, impact and mechanisms . Int. J. Climatol . 21 , 1863– 1898 .  

  19. Meyer-Roux , J. and Vossen , P. 1994 . The first phase of the MARS project, 1988–1993: overview, methods and results. In: Proceedings of the Conference on the MARS Project: Overview and Perspectives, Belgirate, 17-18 November 1993 . Publication EUR 15599 EN of the Office for Official Publications of the EU, Luxembourg .  

  20. Meza , F. J. and Wilks , D. S. 2003 . Value of operational forecasts of seasonal average sea surface temperature anomalies for selected minted agricultural locations of Chile . Agric. For. Meteorol . 116 , 137 – 158 .  

  21. Neelin , J. D. , Battisti , D. S. , Hirst , A. C. , Jin , F. , Wakata , Y. and co-authors . 1998 . ENSO theory. J. Geophys. Res . 103 , 14261 – 14290.  

  22. Nnaji , A. 0. 2001 . Forecasting seasonal rainfall for agricultural decision-making in northern Nigeria . Agric. For. Meteorol . 107 , 193 – 205 .  

  23. Ogallo , L. A. , Boulahya , M. S. and Keane , T. 2000 . Applications of seasonal to interannual climate predictions in agricultural planning and operations . Agric. For. Meteorol . 103 , 159 – 166 .  

  24. Olesen , J. E. and Bindi , M. 2002 . Consequences of climate change for European agricultural productivity, land use and policy . Eur. J. Agronomy 16 , 239 – 262 .  

  25. Palmer , T. N. 1993 . Extended-range atmospheric prediction and the Lorentz model . Bull. Am. Meteorol. Soc . 74 , 49 – 65 .  

  26. Palmer , T. N., Brankovic, and Richardson , D. S. 2000. A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations. Q. J. R. Meteorol. Soc . 126 , 2013–203 4 .  

  27. Palmer , T. N. , Alessandri , A. , Andersen , U. , Cantelaube , P. , Davey , M. and co-authors. 2004. Development of a European multi-model ensemble system for seasonal-to-interannual prediction (DEMETER) . Bull. Am. Meteorol. Soc . 85 , 85 – 872 .  

  28. Pavan , V. , Molteni , F. and Brankovic , Ĉ. 2000 . Wintertime variabilityin Euro-Atlantic region in observations and in ECMWF seasonal ensemble experiments . Q. J. R. Meteorol. Soc . 126 , 2143 – 2173 .  

  29. Penman , H. L. 1948 . Natural evaporation from open water, bare soil and grass . Proceedings of the Royal Society, Series A 193 , 120 – 146 .  

  30. Petersen , E. and Fraser , R. W. 2001 . An assessment of the value of seasonal forecasting technology for Western Australian farmers . Agricultural Systems 70 , 259 – 274 .  

  31. Phillips , J. G. , Cane , M. A. and Rosenzweig , C. 1998 . ENSO, seasonal rainfall patterns and simulated maize yield variability in Zimbabwe . Agric. For Meteorol 90 , 39 – 50 .  

  32. Rabbinge , R. and van Diepen , C. A. 2000 . Change in agriculture and land use in Europe . Eur J. Agronomy 13 , 85 – 100 .  

  33. Richardson , C. W. 1981 . Stochastic simulation of daily precipitation, temperature and solar radiation . J. AppL Meteorol . 17 , 182 – 190 .  

  34. Rijks , D. , Terres , J. M. and Vossen , P. 1998 . Agrometeorological Applications for Regional Crop Monitoring and Production Assessment, Account of the EU Support Group on Agrometeorology (SUGRAM). Publication EUR 17735 EN of the Office for Official Publications of the European Communities, Luxembourg.  

  35. Shukla , J. 1998 . Predictability in the midst of chaos: a scientific basis for climate forecasting . Science 282 , 728 – 731 .  

  36. Sivalcumar , M. V. K. , Gommes , R. and Baier , W. 2000 . Agrometeorology and sustainable agriculture . Agric. For Meteorol 103 , 11 – 26 .  

  37. Solow , A. , Adams , R. M. , Bryant , K. J. , Legler , O. M., O’Brien , J. J. and co-authors . 1998 . The value of improved ENSO prediction to US agriculture. Clim. Change 39 , 47 – 60 .  

  38. Supit , I. 1997 . Predicting national wheat yields using a crop simulation and trend models . Agric. For Meteorol . 88 , 199 – 214 .  

  39. Van Diepen , C. A. , Wolf , J. and van Keulen , H. 1989 . WOFOST: a simulation model of crop production . Soil Use and Management 5 , 16 – 24 .  

  40. Vossen , P. 1995 . Early crop production assessment of the European Union, the system implemented by the MARS—STAT Project. Agrometeorological models: theory and applications in the MARS project. Publication EUR 16008 EN of the Office for Official Publications of the European Communities, Luxembourg.  

  41. Wallace , J. M. and Gutzler , D. S. 1981 . Teleconnections in the geopotential height field during the Northern Hemisphere winter . Mon. Wea. Rev . 109 , 784 – 812 .  

comments powered by Disqus