Start Submission Become a Reviewer

Reading: Reduction of systematic errors by empirical model correction: impact on seasonal prediction ...

Download

A- A+
Alt. Display

Original Research Papers

Reduction of systematic errors by empirical model correction: impact on seasonal prediction skill

Authors:

A. Guldberg ,

Climate Research Division, Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen ø, DK
X close

E. Kaas,

Climate Research Division, Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen ø, DK
X close

M. Déqué,

Météo-France, Centre National de Recherches Météorologiques, 42 Avenue Coriolis, F-31057 Toulouse Cedex, FR
X close

S. Yang,

Climate Research Division, Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen ø, DK
X close

S. Vester Thorsen

Climate Research Division, Danish Meteorological Institute, Lyngbyvej 100, DK-2100 Copenhagen ø, DK
X close

Abstract

Recent studies indicate that the atmospheric response to anomalies in the lower boundary conditions, e.g. sea surface temperatures, is strongly dependent on the atmospheric background flow. Since all general circulation models have long-term systematic errors it is therefore possible that the skill in seasonal prediction is improved by reducing the systematic errors of the model. In this study sensitivity experiments along this line are made with an empirically corrected dynamical model for which the systematic errors are reduced substantially and the dynamical variability has become more realistic than for the original model. As a measure of seasonal prediction skill, correlation of temporal anomalies between modelled and observed data has been determined. The corrected model shows improved skill in the Southern Hemisphere in general—on average a 20–30% improvement for the Southern Hemisphere compared with the original model. In the Northern Hemisphere skill is improved in some areas, but in other areas the skill of the original model is better. On average there is no improvement for the Northern Hemisphere. Also, pattern correlations have been determined for the following areas: the Northern Hemisphere, the Southern Hemisphere, the tropics and Europe. The general picture is that the two model versions are very similar in the Northern Hemisphere and in the tropics. For Europe the results of the two models are rather different, but no model can be said to be better than the other. In the Southern Hemisphere it is again seen that the correlations are higher for the corrected model than for the original model.

How to Cite: Guldberg, A., Kaas, E., Déqué, M., Yang, S. and Thorsen, S.V., 2005. Reduction of systematic errors by empirical model correction: impact on seasonal prediction skill. Tellus A: Dynamic Meteorology and Oceanography, 57(4), pp.575–588. DOI: http://doi.org/10.3402/tellusa.v57i4.14707
  Published on 01 Jan 2005
 Accepted on 25 Nov 2004            Submitted on 17 Feb 2004

References

  1. Brankovié , Č. and Palmer , T. N. 2000 . Seasonal skill and predictability of ECMWF PROVOST ensembles . Q. J. R. MeteoroL Soc . 126 , 2035 – 2067 .  

  2. Branstator , G. 1983 . Horizontal energy propagation in a barotropic atmosphere with meridional and zonal structure . J. Atmos. Sci . 40 , 1689 – 1707 .  

  3. D’Andrea , F. and Vautard , R. 2000 . Reducing systematic errors by empirically correcting model errors . Tellus 52A , 21 – 41 .  

  4. Déqué , M. 1997 . Ensemble size for numerical seasonal forecasts . Tellus 49A , 74 – 86 .  

  5. Déqué , M. , Dreveton , C. , Braun , A. and Cariolle , D. 1994 . The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling . Clim. Dyn . 10 , 249 – 266 .  

  6. Derome , J. , Brunet , G. , Plante , A. , Gagnon , N. , Boer , G. J. and co-authors 2001 . Seasonal predictions based on two dynamical models. Atmos. Ocean 39 , 485 – 501 .  

  7. Eliasen , E. , Machenhauer , B. and Rasmussen , E. 1970 . On a Numerical Method for Integration of the Hydrodynamical Equations with a Spectral Representation of the Horizontal Fields . Report no 2, Institute for Theoretical Meteorology , Copenhagen University , Copenhagen .  

  8. Gibson , J. K. , Khllberg , P. , Uppala , S. , Hernandez , A. , Nomura , A. and co-author 1997 . ERA-15 Description. ECMWF Re-analysis Project Report Series, Volume 1. ECMWF, Reading.  

  9. Jeuken , A. B. M. , Siegmund , P. C. , Heijboer , L. C. , Feichter , J. and Bengtsson , L. 1996 . On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation . J. Geophys. Res . 101 , 16 939–16 950 .  

  10. Kållberg , P., 1997 . Aspects of the Re-Analysed Climate. ECMWF Re-analysis Project Report Series, Volume 2. ECMWF, Reading.  

  11. Kaas , E. , Guldberg , A. , May , W. and Deque , M. 1999 . Using tendency errors to tune the parameterisation of unresolved dynamical scale interactions in atmospheric general circulation models . Tellus 51A , 612 – 629 .  

  12. Kharin , V. V. and Zwiers , E W. 2001 . Skill as a function of time scale in ensembles of seasonal hindcasts . Clim. Dyn . 17 , 127 – 141 .  

  13. Kharin , V. V. , Zwiers , E W. and Gagnon , N. 2001 . Skill of seasonal hindcasts as a function of the ensemble size . Clim. Dyn . 17 , 835 – 843 .  

  14. Klinker , E. and Sardeshmulch , P. D. 1992 . The diagnosis of mechanical dissipation in the atmosphere from large-scale balance requirements . J. Atmos. Sci . 49 , 608 – 627 .  

  15. Kumar , A. and Hoerling , M. P. 2000 . Analysis of a conceptual model of seasonal climate variability and implications for seasonal prediction . Bull. Am. MeteoroL Soc . 81 , 255 – 264 .  

  16. Kumar , A. , Hoerling , M. P. , Ji , M. , Leetmaa , A. and Sardeshmulch , P. 1996 . Assessing a GCM’s suitability for making seasonal predictions . J. Climate 9 , 115 – 129 .  

  17. Machenhauer , B. and Kirchner , I. 2000 . Diagnosis of systematic initial tendency errors in the ECHAM AGCM using slow normal mode data-assimilation of ECMWF reanalysis data. CLI VAR Exchanges, no. 18, 9–10. International CLIVAR Project Office, Southampton.  

  18. Palmer , T. N. , Branlcovié , C. and Richardson , D. S. 2000 . A probability and decision-model analysis of PROVOST seasonal multi-model ensemble integrations . Q. J. R. Meteorol. Soc . 126 , 2013 – 2033 .  

  19. Peng , S. , Robinson , W. A. and Hoerling , M. P. 1997 . The modeled atmospheric response to midlatitude SST anomalies and its dependence on background circulation states . J. Climate 10 , 971 – 987 .  

  20. Peng , S. and Whitaker , J. S. 1999 . Mechanisms determining the atmospheric response to midlatitude SST anomalies . J. Climate 12 , 1393 – 1408 .  

  21. Sausen , R. and Ponater , M. 1990 . Reducing the initial drift of a GCM . Beitr Phys. Atmosph . 63 , 15 – 24 .  

  22. Schubert , S. and Chang , Y. 1996 . An objective method for inferring sources of model error . Mon. Weather Rev . 124 , 325 – 340 .  

  23. Vitart , E 2004 . Monthly forecasting . ECMWF Newsletter 100 , 3 – 13 .  

  24. Williamson , D. L. 2002 . Time-split versus process-split coupling of parameterizations and dynamical core . Mon. Weather Rev . 130 , 2024 – 2041 .  

  25. Yang , X. and Anderson , J. L. 2000 . Correction of systematic errors in coupled GCM forecasts . J. Climate 13 , 2072 – 2085 .  

comments powered by Disqus