Start Submission Become a Reviewer

Reading: The effects on oceanic planetary waves of coupling with an atmospheric energy balance model

Download

A- A+
Alt. Display

Original Research Papers

The effects on oceanic planetary waves of coupling with an atmospheric energy balance model

Authors:

Riccardo Farneti ,

Southampton Oceanography Centre, Southampton, GB
X close

Peter D. Killworth

Southampton Oceanography Centre, Southampton, GB
X close

Abstract

This paper shows the existence of a growing planetary-wave-like ocean mode, with a decadal period and growth rate, which appears when a stratified, diffusive ocean is coupled to a simple atmosphere via an energy balance model (EBM). Such modes are not found when simpler surface ocean conditions are applied. The mode is low order in the vertical and, because of its slow growth, is likely to be observed in Earth System Models using an EBM in place of a fuller set of atmospheric dynamics. There is no apparent physical energy source for such a mode, and therefore it should not be expected to arise in such a model. The mode is analysed through a hierarchy of simple models, which differ only through their surface boundary condition.

How to Cite: Farneti, R. and Killworth, P.D., 2005. The effects on oceanic planetary waves of coupling with an atmospheric energy balance model. Tellus A: Dynamic Meteorology and Oceanography, 57(5), pp.742–757. DOI: http://doi.org/10.3402/tellusa.v57i5.14736
  Published on 01 Jan 2005
 Accepted on 17 Feb 2005            Submitted on 27 Aug 2004

References

  1. Barsugli , J. J. and Battisti , D. S. 1998 . The basic effects of atmosphere-ocean thermal coupling on midlatitude variability. J. Amos. Sci . 55 , 477 – 493 ( BB98 ).  

  2. Bjornsson , H. , Mysak , L. and Schmidt , G. 1997 . Mixed boundary conditions versus coupling with an energy-moisture balance model for a zonally averaged ocean climate model . J. Climate . 10 , 2412 – 2430 .  

  3. Cessi , P. 2000 . Thermal feedback on wind stress as a contributing cause of climate variability . J. Climate 13 , 232 – 244 .  

  4. Cessi , P. and Paparella , E 2001 . Excitation of basin modes by ocean-atmosphere coupling . Geophys. Res. Lett . 31 , 3020 – 3029 .  

  5. Cessi , P. and Primeau , F. 2001 . Dissipative selection of low-frequency modes in a reduced-gravity basin . J. Phys. Oceanogr . 31 , 127 – 137 .  

  6. Chelton , D. B. and Schlax , M. G. 1996 . Global observations of oceanic Rossby waves . Science 272 , 234 – 238 .  

  7. Colin de Verdière , A. and Blanc , M. L. 2001 . Thermal resonance of the atmosphere to SST anomalies. Implications for the Antarctic circum-polar wave. Tellus 53A , 403 - 424 .  

  8. Colin de Verdière , A. and Huck , T. 2001 . Baroclinic instability: an oceanic wavemaker for interdecadal variability. J. Phys. Oceanogr . 29 , 29 – 910 .  

  9. Fanning , A. E and Weaver , A. 1996 . An atmospheric energy-moisture balance model: climatology, interpentadal climate change, and coupling to an ocean general circulation model . J. Geophys. Res . 101 , 15 111–15 128 .  

  10. Ferreira , D. , Franlcignoul , C. and Marshall , J. 2001 . Coupled ocean—atmosphere dynamics in a simple midlatitude climate model . J. Climate 14 , 13 704–13 723 .  

  11. Frankignoul , C. , Muller , P. and Zorita , E. 1997 . A simple model of decadal response of the ocean to stochastic wind forcing . J. Phys. Oceanogr 27 , 1533 – 1546 .  

  12. Gill , A. E. 1982 . Atmosphere—Ocean Dynamics, Academic Press, International Geophysics Series Vol. 30 , 662 pp .  

  13. Goodman , J. and Marshall , J. 1999 . A model of decadal middle-latitude atmosphere—ocean coupled modes . J. Climate 12 , 621 – 641 .  

  14. Goodman , J. and Marshall , J. 2003 . The role of neutral singular vectors in midlatitude air—sea coupling . J. Climate 16 , 88 – 102 .  

  15. Haney , R. L. 1971 . Surface thermal boundary condition for ocean circulation models . J. Phys. Oceanogr . 1 , 241 – 248 .  

  16. Harvey , L. D. D. 1988 . A semi-analytic energy balance climate model with explicit sea ice and snow physics . J. Climate 1 , 1065 – 1085 .  

  17. Huck , T. and Vallis , G. K. 2001 . Linear stability analysis of the three-dimensional thermally-driven ocean circulation: application to inter-decadal oscillations . Tellus 53A , 526 – 545 .  

  18. Huck , T. , Vallis , G. K. and Colin de Verdiere , A. 2001. On the robustness of the interdecadal modes of the thermohaline circulation. J. Phys. Oceanogr 14 , 940 – 963.  

  19. Jin , F. F. 1997 . A theory for interdecadal climate variability of the North Pacific ocean—atmosphere system . J. Climate 10 , 1821 – 1835 .  

  20. Kiehl , J. T. 1992 . Atmospheric general circulation modelling. In: Climate System Modelling (ed. K. E. Trenberth ), Cambridge University Press , Cambridge , 319 - 369 .  

  21. Killworth , P. D. and Blundell , J. R. 1999 . The effect of bottom topography on the speed of long extratropical planetary waves . J. Phys. Oceanogr . 29 , 2689 – 2710 .  

  22. Killworth , P. D. and Blundell , J. R. 2003 . Long extratropical planetary wave propagation in the presence of slowly varying mean flow and bottom topography. I: the local problem. J. Phys. Oceanogr 33 , 784. – 801.  

  23. Killworth , P. D. , Chelton , D. B. and de Szoeke , R. A. 1997 . The speed of observed and theoretical long extratropical planetary waves . J. Phys. Oceanogr 27 , 1946 – 1966 .  

  24. Kravtsov , S. and Dewar , W. 2003 . On the role of thermohaline advection and sea ice in glacial transitions. J. Geophys. Res . 108 , doi: https://doi.org/10.1029/2002JC001439 .  

  25. Ledwell , J. , Watson , A. and Law , C. 1998 . Mixing of a tracer in the pycnocline . J. Geophys. Res . 103 , 21499–21 529 .  

  26. Liu , Z. 1993 . Interannual positive feedbacks in a simple extratropical air—sea coupling system . J. Phys. Oceanogr 50 , 3022 – 3028 .  

  27. Munk , W. and Wunsch , C. 1998 . Abyssal recipes II: energetics of tidal and wind mixing . Deep-Sea Res . 45 , 1977 – 2010 .  

  28. North , G. R. 1975 . Theory of energy-balance climate models . J. Atmos. Sci . 32 , 2033 – 2043 .  

  29. North , G. R. , Cahalan , R. E and Coakley , J. A. 1981 . Energy balance climate models . Rev. Geophys. Space Phys . 19 , 91 – 121 .  

  30. Pierce , D. W. , Kim , K-Y. and Barnett , T. P. 1996 . Variability of the ther-mohaline circulation in an ocean general circulation model coupled to an atmospheric energy balance model . J. Phys. Oceanogr . 26 , 725 – 738 .  

  31. Qiu , B. and Jin , F. F. 1997 . Antarctic circumpolar waves: an indication of ocean—atmosphere coupling in the extratropics . Geophy. Res. Lett . 24 , 2585 – 2588 .  

  32. Qiu , B. , Miao , W. and Muller , P. 1997 . Propagation and decay of forced and free baroclinic Rossby waves in off-equatorial oceans . J. Phys. Oceanogr . 27 , 2405 – 2417 .  

  33. Talley , L. 1999 . Simple coupled mid-latitude climate models . J. Phys. Oceanogr . 29 , 2016 – 2037 .  

  34. Trenberth , K. E. (ed .) 1992. Climate System Modelling. Cambridge University Press , Cambridge , 788 pp .  

  35. Weaver , A. J. , Eby , M. , Wiebe , E. C. , Bitz , C. M. , Duffy , P. B. and co-authors. 2001. The UVic Earth System Climate Model: model description, climatology, and applications to past, present and future climates . Atmos-Ocean 39 , 361 – 428.  

  36. Webb , D. and Suginohara , N. 2001 . Vertical mixing in the ocean . Nature 409 , 37 .  

  37. White , W. B. 2000 . Coupled Rossby waves in the Indian ocean on inter-annual time-scales . J. Phys. Oceanogr 30 , 2972 – 2988 .  

  38. White , W. B. , Ghao , Y. and Thai , C. K. 1998 . Coupling of biennial oceanic Rossby waves with the overlying atmosphere in the Pacific basin-1 . Phys. Oceanogr 28 , 1236 – 1251 .  

comments powered by Disqus